Homework \#1
 Due Jan 26

Read as much of Griffiths chapters $1,2,3$ as you like

1. Griffiths 1.2
2. Griffiths 1.10 Use Table IIb. All Physical Review journals are easily accessible online. This article is at
http://prola.aps.org/abstract/RMP/v35/i2/p314_1
3. Griffiths 2.3
4. Griffiths 2.5
5. Griffiths 2.7
6. Griffiths 3.18
7. Griffiths 3.22 (just parts a) and d))
8. Using the same back-of-the-envelope kind of calculation that we used in class to calculate the cross-section for the process

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
$$

calculate the ratio R

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

as a function of the Center-of-Mass energy. Here q stands for any flavor of quark. (For this problem you can ignore any resonances that might occur).
9. Calculate the Branching Ratio (\mathcal{B}) for the process

$$
\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}
$$

again using a back-of-the-envelope calculation. Compare your result against the current world average in the Particle Data Book.
10. Calculate the Center-of-Mass Energy \sqrt{s} for a proton-proton collision, for the case where a) a proton with energy E collides with another proton at rest, and b) the two protons collide head-on, each with energy E.

