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Theory of Random Processes

3.1 BASIC CONCEPTS

In this section we present a brief review of the basic deﬁnltl((;qs atlttlld
concepts of probability theory. The reader who has no backgrm;)q in 1181
area is advised to consult one of the many general fexis on the sul 6]5ect, suc
as Davenport and Root (1958), Davenport (1970){ or Papou}ls (1965). .

We make no claim of rigor or completeness in this review. Ogr goah.s
merely to assemble the tools necessary in an analysis of noise in radiographic

systems.

3.1.1 Probability and Probability Distributions

In the most elementary terms, the probability of some event is it's relative
frequency of occurrence in a large number of tr{als. Eor example, if we cast
a fair die 6,000,000 times, we should expect the side with three spots to show

.y . . l '

" up about 1,000,000 times; the probability of rolllpg a thr.ee is §. M(;lr.e .=
formally, if event A is a possible outcome of a certain e)fpenment, and this
event occurs m(A) times during M repetitions of the experiment, then we may

define the probability of occurrence of A as

Pr(4) = lim [m(4)/M]. Gh

We denote probability as Pr( ) rather than the more common 'P( ) in c}rder‘;;f
to avoid confusion with the point spread function p(r) and its trans orm
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P(p), which were introduced earlier. Note also that Pr( ) does not imply a
specific functional dependence, but is to be read “the probability that . . .
occurs.”

It is evident from this definition that probability is a nonnegative real
number. Furthermore, if an event is certain to occur in every repetition of
the experiment, the definition shows that its probability is one. Therefore,

0<Pr(4) < 1. (32)

Two events 4 and B are said to be mutually exclusive if the occurrence
of one of them precludes the occurrence of the other. Rolling a three with a
die and rolling a two are mutually exclusive events since both cannot occur
simultaneously. If event 4 occurs m(A4) times and a mutually exclusive

event B occurs m(B) times in M trials, the probability that either A or B
occurs is

Pr(A or B) = lim

m(A) + m(B)
M-w M

= Pr(A) + Pr(B). (3.3)

This equation is readily extended to any number of mutually exclusive
events. For example, suppose the basic experiment is to count the number
of gamma rays detected by a certain detector during a 1-sec interval. The
probability that the number of detected photonsm, in this interval is precisely

nis denoted by Pr(ny = n) or, more simply, Pr(n). The probability of detecting
some different number n’ is Pr(n’). Then (3.3) says that

Pr(n or n') = Prin) + Pr(n). 3.4)
By extension, the probability that the number detected is less than or equal
to some specified value N is given by

Pr(n; < N)= i Pr(n). (3.5)
n=0

Since some number of photons (possibly zero) must be detected, the condition

. N - o represents the certain event, and we obtain an important normal-
. ization condition:

Pr(ng < )= ) Pr(n)=1. (3.6)

n=0
In the above example, the number of detected photons n, is called a
random variable. Basically, a random variable is nothing more than a numer-
ical representation of the set of all possible outcomes of an experiment. One
of those outcomes is called a sample value of the random variable. In the
case of ny, the domain of the random variable is the set of nonnegative integers.
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More generally, the domain is the set of values that can be assumed by the
random variable. Other examples can easily be constructed where the domain
consists of all integers, all real numbers, or even vectors or complex numbers.
We shall use sans-serif type to denote a random variable in all cases. Sample
values of the random variable will be in italic type for scalars and boldface
roman type for vectors.

If we are interested in two or more random variables simultaneously, a
joint probability is required. To make the discussion concrete, let us again
consider a photon-counting experiment, this time with two detectors. The
number counted by detector one during a certain time interval is denoted
by the random variable n,, while the number counted by detector two
during the same interval is the random variable n,. The joint probability
Pr(n, = n,n, = m) o, more simply, Pr(n,m), is defined as the relative fre-
quency of occurrence of the composite event in which n, is precisely n and
n, is precisely m. Equation (3.2) is still applicable for this composite event
and may be restated as

0K Pr(n,m < 1. 3.7

Furthermore, the certain event consists of allowing all possible combinations
of n and m, each combination being mutually exclusive with all other com-
binations. Therefore, the analog of (3.6) is

io io Prin,m)=1. (3.8)

In terms of the joint probability, the simple probability that detector one
detects n photons, irrespective of the number detected by detector two, is

Pr(n, =n) = io Pr(n,m). 39) }{‘

[Note that the simplified notation Pr(n) could be misleading here since it

could also be interpreted as Pr(n, = n).]

Another useful kind of probability is the conditional probability. In

the two-detector photon-counting experiment, we may define a quantity

Pr(n, = n|n, =m) [or Pr(n|m)] as the conditional probability that the.

random variable n, takes on the value n when it is known that n, takes on:

the value m. Conditional probability may still be interpreted as a relativq"

frequency, but the number of trials M in the denominator of (3.1) must now
include only those trials in which n, happened to equal m. The numerator is
the number of times that n, was equal to n and n, was equal to m, just as it
would be in a joint probability. The difference between a joint and a con-
ditional probability is thus in the denominator of the relative-frequency
definition, not in the numerator. It follows that the joint and conditional
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probabilities are related by
Pr(n, = n,n, = m) = Pr(n, = n|n, = m) Pr(n, = m), (3.10)
or, in simplified form,
Pr(n,m) = Pr(n|m) Pr(m). (3.11)

}wo .;anﬁdom variables like n, and n, are said to be statistically inde-
pendent if the value taken on by one of them has no influence on the value

assumed by the other. In that case the conditi ili
o s Senple probatTie ional probability must reduce

Pr(n, = n|n, = m) = Pr(n, = n). (3.12)
By (3.10), this requires that
Pr(n, = n,n, = m) = Pr(n, = n)Pr(n, = m), (3.13)
or
Pr(n, m) = Pr(n) Pr(m). (3.14)

Sta_tls.tlgal independence between two random variables thus means that
their joint prot_>ability is factorable into two simple probabilities

To this Pomt, we have considered only discrete random va.riab]es ie
ra_ndom variables whose domain can be put into one-to-one correspond’en.c;
wlth some set of integers (in the case of n, and n,, the set of all nonnegative
mtegers)..lt is often useful, however, to consider random variables df:ﬁned
on a continuous domain, or continuous random variables for short. Consider
for example, the random variable x representing points alonga line; extendiné
from — oo to +00. It makes no sense to speak of the probability that x takes
on some specific value, say x,, because there are a nondenumerably infinite
nurqber of sucb values. The probability of observing precisely the specified
one is thus vanishingly small. Nevertheless the general concept of probabilit
is still _useful. We can, for example, consider the probability that x assumes a)l,
value in the range x, — Ax, < x < x, + 3 Ax,. If Ax, is small enough, we

i would expect this probability to be proportional to Ax,, and it can also

depend on x, itself. We can thus write, rather generally,

Pr(x, — $Ax, < x < x; + $Ax,) = pr(x,) Ax,. (3.15)

;\\;I‘he ﬁroportlonahty .factor prix,) is‘called the probability density function
: or t e .random variable x. There is an important difference between a
Egﬁ)babllzty, der.loted Pr( '), and a probability density function, denoted pr( )
Thelatter may indeed be regarded as a mathematical function of its argument

Wh
hen necessary, as when more than one random variable is involved in a

given problem, we shall distinguish the corres i ili i
1ven s _ ponding probabilit
fanctions by appropriate subscripts. E probability densit
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With the aid of pr(x;), more general probabilities can readily be calcu-
lated. For example, the probability that x falls in the finite range a <X < b
may be found by dividing the range into small, mutually exclusive elements
of width Ax,. By generalization of (3.4), we then have

Pria<x <b)= j" pr(xy)dx,. (3.16)

Since x is constrained to lie in the interval (— oo, ), we must also have, by
analogy to (3.6),

Pr(— 0 <X < )= jj"w prix,)dx; = 1. 3.17)

The analog of (3.5) is also useful. By setting @ = — 00 and b= X in (3.16)
we find

Prix< X) = [ prixi)dxs, (3.18)

This quantity, Pr(x < X ), regarded as a function of X, is called the cumulative
probability distribution function* for the random variable x. If Pr(x < X) is
known, pr(x,) is readily found from it since

5‘7}—( Prx < X) = a-a)? ﬁ‘m prix;)dx; = priX). (3.19)
Since pr(X) cannot be negative [see (3.15)], Pr(x < X) must be a monotoni-
cally increasing function of X.

When more than one continuous random variable is involved, joint and
conditional forms of both the probability density function and the cumulative
probability distribution function may be defined by a straightforward ex-
tension of their discrete counterparts.

Even if the random variables of interest are discrete, the continuous

formalism is still applicable if we allow the probability density functions to

involve Dirac delta functions. For example, suppose that the random variable . -

x can take on only the discrete values x, (n = 1,2,..., N) and that

Pr(x = x,) = P.- (3.20)

Then we can define a probability density function pr(x’) by

. :
prix) = ¥ P,o(x" — x,). (321)
n=1 .

* Many texts refer to this quantity as the distribution function, but we shall retain the woi;d
cumulative 1o avoid confusion with specific probabilities, such as for Poisson random variables,
which are also called distributions.
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( . ) . (]
IO see that 3 21 1S llldeed consistent Wltll 3 2() let us integrate 1t over some

x+e
L_E pr(x’)dx’=Pr(x—£<x<x+£)={P" irx=x,
o : X 0 otherwise, 322)
lich must be correct since x can fall i
of 1t; lfliscrete values lies in that range. i the range (x = &x + ) only if one
e reader may wish to verify that if x is constrained to discrete values

Pr(x < X) is discontin i
uous but fi : . -
where. nite and monotonically increasing every-

3.1.2 Expectation Values, Moments, and the
Characteristic Function

Consi . .

. :I}Slger a Islscrete random variable x that can have the values

a],emly ,ex, é;i. , N). Suppo§e a lgrge number of measurements of x (or equiv-

alen x, ocp ments qf which x is the outcome) are performed, and that th
; occurs m(x;} times. Then the arithmetic average value o’f X is given b;

1 N
OOy = i i; m(x)x;, (3.23)

where M is the total number of measurements, i.c
3 Trey

N
M= mx).
B P ;) (3.24)
ut, from the definition of ility 1
fro probability in (3.1 ; S
Pr(x = x;) = Pr(x;) as M — oo. Therefore, in this lim)it /M approaches

N

Aiiinw OOp =) =Y x;Pr(x). (3.25)

i=1

i [he natural generdllz,dl (4] ()I “l cquatio oca A
0on 18
| q tion t continuous random ar]able

O = f 7 X pr(x)dx. (3.26)

: The quanti i i
‘*'stochgstic zty {x) is variously called the mean, the ensemble average, th
, verage, the expected value, or the expectation value of x. It ig c’)fte:lz

denoted by E{x} or x.

The same line of reasoning can be applied to determine the expectation
value of an l(l)w ff “Th bie —tr e © ttix
/ power of x. The random variable y = x" takes on the value x"

y i

Whenevel X = i i i €
x, . SlnCC thls Condltlon Oblains m(xi) tlmes m M measurements,
s

!H
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write
we can (327)

N
ey =Y, xiPr(x)
i=1
or, in the continuous ¢ase,
Xy = I :0 x™ pr(x')dx’.
t any one sufficiently well behaved to admit of 2
d similarly, yielding

(3.28)

Any function of x, at leas

ngver-series expansion, can be treate

) 3 (329
) = Z fx)Prix)

i=1

or (3.30)

ooy = [, S prix)dx’
The quantity {x") is called the nth moment of x.
nth central moment defined by

Also of interest is the

3

H

N 3.31)
Py = 3 = BPel) .
i=1
or N dx 33) |
(-3 = |7, 6 =B prix)dx; 632 i
where DN (333
X = . i
. I

1n particular, the second central moment OF variance 18 given y 0
n ’ 34y
’ o2 = (o — ) = (&) — (O™ o
* o = 2y = %2 = (x)2. The positive
The second form follows because (%) =% =X denoted by

i iation of X,
are root of the variance 18 called the standav;i ?ﬁé‘:& on r{s :
Soquand is the root-mean-square (rms) value of the
x
mean. .
When more than one random \t{ana(l;lf e
i ts must be found Ir
tion values and momen _ J
For example, if x and y are continuous random vr: e ven by
a joint moment Or CTOSS moment of order n +

ooymy = [°, ax [, dyxmymprtes y)

The joint central moment dx — Y — I

f x about its:

¢ is involved ina probl.em, expgcta-’-
oint probability function

8.
iables of domain (— 0, 00),

(335

is called the covariance ofx and v

!
H
H
i
14
:
!
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Ifx and y are statistically independent, pr(x’, ') = pr(x') pr(y') and hence
xy™y = {x"Hy™. (3.36)
On the other hand, if {xy) = {(x){y>, x and y are said to be uncorrelated.

This is a weaker condition than statistical independence since it could

happen that {xy> = (x> {y), but {x"y™> # (x">{y*>ifn# 1l orm# 1.
A particularly interesting statistical average of a function of the random
variable x is the quantity M,(4) defined by

M, (A) = (exp(—2milx)). (3.37)

If x is a continuous random variable of domain (— oo, 00), then from (3.30)
M,(A) = f_: dx’ pr(x’) exp(—2nidx’). (3.38)

In other words, M (), which is usually called the characteristic function, is
the Fourier transform of the probability density function pr(x').

Another name for M, (4) is the moment-generating function [although
many books reserve this term for (exp(4x))]. The reason for this designation
is that the nth moment of x is related to the nth derivative of M (1) as follows:

(d" ‘Ali;(ll))l=0 — (—27”)" ffw pr(x/)xmdxl

= (—2mi{x">. (3.39)

This equation also shows that the characteristic function, and hence the prob-
ability density function, is completely determined by the moments, because
the left-hand side is just the coefficient of the nth term in a Taylor series
expansion of M ().

As an example of the use of the characteristic function, let us consider
the random variable z = x + y, where x and y are statistically independent
random variables. The characteristic function for z is

M,(3) = (exp[ - 2mid(x + y)]. (3.40)

Because of the statistical independence, this becomes

M, (4) = {exp(—2milx)) (exp(— 2mily))
= M ()M,(4). (3.41)

Now we can use the fact that M,(1) is the Fourier transform of pr,(z'), to-
gether with the convolution theorem (B.52) to obtain the important result
.that the probability density function for z is the convolution of the corre-
‘sponding functions for x and y. Adding subscripts for clarity, we may write
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this result
pr.(z) = pra(2) * Pry(#)
= f: pri(x)pry = 7 — x')dx'.

Further use will be made of this result in Section 3.2.

(3.42)

3.1.3 Random Processes

The behavior of a random variable is often influenced by one or more
independent parameters such as time or position. When the dependence on
these parameters is important, the random variable is called a random process.
For example, the instantancous count rate from a detector viewing a radio-
isotopic gamma-ray source is a random variable that fluctuates with time
(see Fig. 3.1). Furthermore, even the average count rate may vary with time
if the observation time is long compared to the half-tife of the source ot if the
source-detector distance is changing with time. In such a case the relative-

nition of probability encounters difficulties since it is based on

frequency defi
repeated or time-sequential measurements. An implicit assumption of this

definition is that there are no time-

satisfies the same conditions.
This difficulty can be circumvented by means of a gedankenexpcriment

in which we imagine that we have an ensemble of a large number of identical
apparatuses with all parameters the same. In our example, the ensemble
consists of a large number of radioactive sources, all of the same composition
and activity, and all viewed by identical detectors in identical configurations.
Then, at some instant {;, W€ activate all the counters a
thereby simultaneously o
variable ng(t;) (See Fig.
values for ng(t;) will not all be the same. The process i
tical because we cannot
given nucleus decays and in what direction it emits its gamma ray.
the important point is that we now have, in princip
with which to define relative frequency, probability,
panoply. Averages formed in this way are called ensemble averages; they are,
characteristic of ny at one particular time and say nothing at all about
how the system evolves in time. ;

To trace the time evolution of the ensemble, we must repeat the entiré

set of measurements at a sequence of times ty, Ly, - - . - Bach set of measu}jé-
obability function

ments ng(t) can then be used to define a separate pr
Pr[na(t) = n]. In other words, there is one probability function for “a(!i)a

dependent effects, that every repetition E;

nd count for one second, p
biaining a large number of values for the random |
3.1). Of course, in spite of our best efforts, these ./
s still inherently statis-

control, even in a gedankenexperimem, when a°
However, |

le, a set of measurements:
moments, and the whole:
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g 31 Dustratio a si gamma-ray counting experiment using a

o dunine up:e o (:lslsd:;zi (115 a };{ol}tgge 1\1’([) proportional to the number if plf:tl::::::ee
' , which is the rando ari .

sample functions i i e ) A

sample fun appar:{ :?el: rAand(?m va}flable, representing three differcni rzlemb:r:l:)(}v':n i

e fonction o eied t verages “along the process,” i.e., along the time axis of ann P

ple function; at ed time averages. Averages “across the process,” averagi iorent sam.

one instant ¢y, are called ensemble averages ’ rogine diferent sum-

another for ny(t,) ; i
othe 2), etc.; each ny(t)) is treated as ¢
san&‘mdependent, random vari;blc 8 separate, though not neces
e are now faced with a differe ki
. nt kind of problem: i
- problem: How
quesgi)nn \;:rla})les n,(t;) related to each other? A completeazriflg;li;j 1tff er?t
hlestion q;;l:cels the depermmation of the joint probability function re?att' .
om variables, Pr[ny(t;) =n;, nyt,) =n ] Ho o
, =n,,...] wever,

."since the t; A
;"numbereotf 'c‘an be arb}trarlly close, there can be a nondenumerably infini
tunately, we ult ‘gak"‘g evaluation of the joint probability hopelzs]sn For.
, we can adequately characterize the system for most purpOSes. .fOr-
if we

can determine a si o o
. a(t;) at a time. If we know Pr[ =
enough in ; ng(t) = n,ny(t) =
in rarge Ciriﬁgitlon to caleulate moments like l<[“d(ti)]dk([::d(t )”]!']S nghave
ances, we do not need to know more. In fact in m(;st cept
: ) cases
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we can get by with still less and merely cal‘culgte a .few of the.if)wer-order
joint moments without even finding this pairwise joint probabl_ 1tly.— e
One important joint moment is the one. for which k = —11 ,d t.hg
{ng(tIng(t ). This quantity, regarded as a function of t; and t j’f 1sh calle e
autocorrelation function for the random process n,(t). In terms of the pair
joint probability, it is given by

R, (ti,t) = ngtma(t)>

= i i nm Prng(t) = n,ng(t) = m]. (3.43)

n=0 m=0

More generally, we may consider a continuous ra.ndom process X(t) [v’v;l}:';
for each t;, x(t;) ranges over the continuous domain from — o0 to ®].
the autocorrelation function is given by

R,(t;,t) = x(e (it )
— v [, XX @@ X G} ey

If x(z)) is a complex random process, it ig convent.ional to ilefme the :tlix(t)cr)l-
correlation by {x(t)x*(t;)>, with the asterisk denot}ng comp Tx con]uign the:
In this case the integral in (3.44) bez:(;mesdfotl(rt-;hmensmna, spanning

‘ i i arts of both x'(t;) and x'(£y). .
redlszn?a:fn\?lilif\ye pdiscussed autocorrelations in which the mdependelnet
parameter was the time , but other parameters can also be used. For. ﬁxanclgvé
in Chapter 10 spatial autocorrelations of the form {x(r)x(r ) will re

considerable attention. However, for the nonce, we shall continue to use i

as the parameter in order to avoid the complexity of vector notation.

1n many problems, the autocorrelation function for some random proceis .
x(t) turns out not to depend on the two time arguments f; and t; sep‘_xrate y .
but only on their difference t; — ;. Such processes are said to be stationary,

and the autocorrelation function may be written

R, (1) = <x(ex(ti — 7, (3.45)

(Some authors prefer to call this condition wide-sense;'{
stationarity; narrow-sense ot strict stationarity is t‘hen take'n as the strori'gerg
condition that the pairwise joint probability density function be a function

where T =1t; — t;.

of only t; — t;.) Since x(t) is stationary, R,(1) must be unchanged if we I:S;:aiz
t; with ¢; + © in (3.45). Therefore, for a real §tatlopary r.andombproc ,1355
r;'nust have R,(t) = R,(—1). [More generally, if x(t) is stationary utt ;l:or(r)lr[; in’
R, (t) = R¥(—7).] It canalso be shown that R,(t)is a max1mumbatth c:sec gné
ie., |Rx(r)| < R,(0). From the definition (3.45), R,(0) is seen to be the (

moment of x(t).
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In the gedankenexperiment with the ensemble of sources and detectors,
the output from any one detector as a function of time is called a sample
JSunction of the random process ny(t). Now, in real life, we are uniikely to have
anything approaching an ensemble of detectors at our disposal; more likely,
we shall have only one. The question then is, What can be learned about
the random process from a measurement of one of its sample functions?
Certainly averages can still be defined, only now they must be time averages
rather than statistical or ensemble averages. A finite-duration time average
of the sample function can be defined as

t+(T/2)
t—(T/2)

a0z =7, [T ) ar, (3.46)

The time average of a random process may not exist or it may be different
for different sample functions. Even if these problems do not crop up, the time
average may not be a useful indicator of the statistical average, since the latter
may itself be a function of time. Nevertheless, there are some conditions under
which the time average should equal the statistical average. Returning to our
photon-counting example, if the source has a very long half-life and the
geometry of the apparatus is constant, there is no reason to believe that a
1-sec count performed now and one performed an hour from now will be any
different statistically; the probability functions for the two counts should be
the same. Furthermore, there is no reason to expect the outcome of the
first count to have any influence on the second; the two counts are statistically
independent and the joint probability function factorizes. Under these cir-
cumstances the two counts taken one hour apart could equally well have
been taken simultaneously on two independent apparatuses, i.e., they can
be regarded as two members of an ensemble. In this case the ensemble average
and the time average* should give the same answer for the mean counting
rate. In general, when statistical averages can be replaced by time averages,
the process is said to be ergodic. An ergodic process must be stationary, but
stationarity does not guarantee ergodicity. Proving ergodicity is a difficult
statistical problem that will not be pursued here.

If a process is ergodic, any reasonable function of the process is also

. ergodic. Therefore, moments can be calculated by time averaging as well as
. by ensemble averaging. By the same token, we may define a temporal auto-
. correlation function for a sample function of a real random process by

t+(T/2)
—(T/2)

2(2) = lim % ﬁ x(t' + T)x(t')dt". (3.47)

“If the process is ergodic, #,(t) will be independent of ¢ and equal to R,(1)

defined in (3.45).

' * Taken over a time long enough to give good statistical accuracy but short compared to
the half-life.
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The reader may show some consternation at this point since R (7) 18
the third distinctly different quantity we have called an autocorrelation func-
tion [cf. (3.45), (3.47), and (B.53)]. The only defense is that all three usages
are thoroughly entrenched in the literature. Caveat lector.

3.1.4 Spectral Analysis

Throughout this book we shall make good use of frequency-domain
representations of various physical quantities. Tt is natural to expect that
the frequency domain will also prove useful with random variables. A
straightforward extension of Fourier concepts into the stochastic realm is,
however, soon met with formidable mathematical difficulties.

For example, a Fourier transform of a sample function x(t) of a stationary
random process might be defined by

X(v) = f (1) expl(— 2mive) dt. (3.48)

The problem with this approach is that the total energy in this signal, defined
by
[ xode= [2, xmpa, (3.49)

must be infinite if the process is stationary. The random variable fluctuates
about its mean with constant mean-square deviation and therefore does not

possess a Fourier transform in the usual sense.
One way around this difficulty is to assume that the random process is
periodic, and then to let the period approach infinity. A stationary random

process is said to be periodic with period T if its autocorrelation function

obeys

we can expand x(t) in a Fourier series as

x(1) = Z X, exp(2zinvyt), (3.51)

where ‘
1 pr2 , .

X, = T j‘# . x(£) exp(— 2minvt) dt (3-52)3

and vo = 1/T. [Equations like (3.51) and (3.52), where there are randomj

processes on both sides, are valid equations if they hold for all sample func-
tions of the random process. ] ‘

Ru(t + T) = R0 (350) |

or, equivalently, if every sample function x() is periodic with period T. Then -

e S
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The autocorrelation function can be similarly expanded:
R, (1) = k;:i b, exp(2mikvyt), (3.53a)
where )
b, = -1T~ f _T’Tzﬂ R (7) exp(— 2nikvor) dt. (3.53b)

It is now straightforward to ¢ i
_ 1g ompute the correlation properties
Fourier coeflicients X,. For x(¢) real, we find prope of the

T/2

. 1
OXEY = 77 J‘_ - dt JLT/TZIZ dr' {x(t)x(t')> exp[ —2mivo(nt — mt')]

1 prm2 T2
=Tz f_ 2 dr |~ . dt' R (¢ — t)exp[ —2mive(nt — mt')]

_ 1 T/2 T/2 il
=Tz f,m de |, dt k:Z_w byexp[2mivo(k — n)t]
x exp[ —2mivg(k — m)t']. (3.54)

However, the integral over ¢ vanishes unless k = n, in which case it has the

value T. Similarly, the integral over ¢’ vani i i
\ s anishes unless k = m, in
it also has the value T. Hence I which case

\__jb,, if n=m

/x x* _
XX> =% i n#m (3.59)

The Fourief coefficients X, are therefore uncorrelated and simply related
to thg Fourier coefficients of R,(1).
Since b, is just the average power* {|X,|*> associated with the frequency

g;o, we are led to define a power spectral density function or Wiener spectrum

S.M= Y b,8(v—nv). (3.56)

n=-w

By taking the Fourier transform of (3.53 is si
By ta .53a), we see that S
:Fourier transform of R (t): ) a4 S0t simply the

S.(v) = f_mw dt R (v)exp(— 2mivt). (3.57)

The term “power” is a carryover from electrical engineering. If x(¢) is the voltage sS a
ltage acro
-Q resistor, <|x(t)| > is the average power dlSSlpd’ ted
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The least tortuous way of extending this discussion to nonperiodic ran-
dom processes is just to regard (3.57), which is often called the Wiener—
Khinchin theorem, as the definition of the power spectral density. We shall
see in Section 3.4 that the general definition, (3.57), is consistent with the
strictly periodic definition, (3.56), in the sense that the integral of S,(v) over
some small frequency range Av still represents the average power in that
range. In support of this interpretation, it may be noted that S,(v) cannot be

negative.

3.2 GAUSSIAN RANDOM VARIABLES

The discussion of random variables to this point has been rather ab-
stract; no specific functional forms have been used for either the cumulative
probability distribution function or the probability density functions.
Although a great variety of density functions appear in the literature, virtually
all statistical problems in radiographic imaging involve just two types of
random variables—the Poisson random variable treated in the next section
and the Gaussian random variable discussed here.

3.2.1 The Normal Distribution

A continuous random variable X of domain (— oo, 00) is said to be
Gaussian or to have a normal distribution if its probability density function :

is a Gaussian of the form

pr(x') = (2ne?)” 2 exp[ — (' — %/203], (3.58)

which is plotted in Fig. 3.2. Direct integration will confirm that this function
is properly normalized and obeys (3.17). It is also easy to show that X is, as -

the notation implies, the mean of x, and @2 is its variance, ie.,

X = f © X prix)d, (3.59);
62 = j (= %) prix . (3.60):

It is an important property of Gaussian random variables that all highé;ff’

moments are determined by X and o, since these are the only parametefs
that appear in pr(x'). A repeated integration by parts shows, for example,
that the kth central moment is :

>
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pr{x}

0.5

7 6 5 4 3 2 0 0 | 2 3 4 5 & 7

Fig. 3.2 Plots of three diff i " )
variances. ifferent Gaussian probability density functions with different

Since pr(x’) is a Gaussian, its Fourier t
~ St . s ransform, the che isti -
tion, is also a Gaussian. By Egs. (B.12), (B.14), and (B.37) aracteristic fune

M, (A) = F {pr(x)} = exp[ — 2miAx — 2n%c24?]. (3.62)

The reader can verify this form for M i iating i i

to show that the moments given in (ig,?)bzfr: loﬂ::tr:irrlltelgfmg tranduwing (339
Th_e cum}lla.ltive probability distribution function Pr(x < X) come

ofte:n in statistical problems. For the special case of a Gaussian ra fiup

variable of zero mean and unit variance (X = 0, 62 = 1), Pr(x < X) i nl e

to the error function erf(u) by o , Jiselated

Prix< X)=(Qn)" 2 {* S W X
)=(2n) f;mexp( 5 )dx—§[1+erf(\/§>], (3.63a)

2
erf(u)_—_\/—E fo exp(—t?) dt. (3.63b)

Tables of the error function may be found in most books on statistics.

 Situati =
ituations where X # 0 or 62 # 1 may be handled by a change of variables.

Two random variables x and y are said to be jointly normal or bivariate

: normal if their joint probability density function is of the form

(e, y) = [4nta2ad(t — )1

__2 —
(1 )’) Ox 0,0, 0-3

y exp[ 1 ((x/ —zf)2 _ =0y -y - ?)zﬂ

(3.64)
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The new parameter y is called the correlation coefficient and is a normalized
measure of the correlation between x and y. If y = 0, pr(x’, ¥’} factors into
two normal distributions and x and y are statistically independent. When
y # 0, its significance can be appreciated by calculating the covariance of x
and y, given (after a tedious integration) by

-9y -7 = [°, ax [7, ay & =D = T)pr(x’y)
=y0,0, = y[ola7]'". (3.65)

The correlation coefficient is thus the covariance normalized by the geometric
mean of the two variances.

For most of the problems in this book, we shall be concerned with such
random processes as x(t). Sometimes, but certainly not always, it will turn
out that x(z,) and x(t,) may be considered to be jointly normal random
variables with some degree of correlation between them. The correlation
coefficient is related to the autocorrelation function for the process R,(t;,t5)
[see (3.43)] by

(Ixty) — ®(e)][x(e2) — X(2)]
O x11)0 x(12)
= [OrnOxen] ' [R:(t1512) — x(t)x(t2)]: (3.66)
For the important special case of stationary statistics,

Rx(tl’tZ) = Rx(tl - lZ)’

Py, 1) =

E(tl) = )_C(t2) =X, Oxtp) = Ox(tz) = T
and

Y(tla t2) = G;Z[Rx(tl - t2) - 562] (367)

It is worth noting that no new restrictions have been placed on R, (r) in

this section. A Gaussian random process may have a great variety of temporal

behaviors. Some statement about the autocorrelation function, or equiv-

alently, the power spectral density, must be included to fully characterize ‘;5

the process.

3.2.2 The Central-Limit Theorem

Although Gaussian probability densities are comparatively easy to ma—’;f-;

nipulate, our interest in them is based on more than just mathematical con=;
venience. More important, they occur with great regularity in real physical ;
problems because of an important principle known as the central-limit ;
theorem. 3
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In many physical problems, the observed random variable is really the
sum of a large number N of other independent random variables. In this
case, the central-limit theorem states that the probability density of the
observed variable approaches a Gaussian as N tends to infinity, regardless
of the densities of the constituent random variables. ,

This remarkable theorem is most easily understood by use of the char-
acteristic function introduced in Section 3.1.2. The treatment here is an
extension of the arguments that led to (3.42). Let z denote the observed
random variable and x; be the jth constituent variable, so that

N
z= ) x, (3.68)
ji=1

The characteristic function for z is

M (1) = {exp(—2milz)) = <exp<—2nil i X J>> (3.69)
j=1

J
Since the x; are assumed to be independent, M, (1) becomes

N N
M) = [T <exp(=2aiix)> = [T M4, (3.70)
j= i=1

Since each characteristic function is the Fourier transform of the corre-
sponding probability density function, we have

pr.(z') = pry(z') * pry(z’) # - - - * pra(2'). (3.71)

where pr,(z’) is the probability density for x; evaluated at the point z'.

The important qualitative point about this result is that each of the
fgnctions pr,(z') is positive definite, as all probability densities must be. As
discussed in Section 2.4, convolution with a positive-definite function is a
sm'oothing operation; therefore pr.(z’) becomes progressively smoother as
N increases, regardless of the functional form for pr(z').

4 Of course, it is not yet obvious that the final smooth form for pr,(z') is
in fact, Gaussian, although certainly a Gaussian is a very smooth furzlction’
The graphical example in Fig. 3.3 will lend some credence to the comentior;
that pr,(z') approaches a Gaussian, but a more formal derivation is also

desirgble. A rigorous de‘rivation, valid for all sorts of pathological density
. functions, is actually quite difficult. However, we shall sketch the proof for

the special case where all of the pr; have the same functional form and are

" not terribly il_l behaved. Our treatment parallels that of Davenport and Root
- (1958), to which the reader is referred for a more rigorous justification of the
approximations used.
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pryix) prolx) pr (x)¥pry(x)

(@) (o) @

pry (x)*pri(x)*p”(x) pr.(x)*prz(x)*prllx)* prz(x)

(d) (e)

Fig. 3.3 lustration of the central limit theorem. We consider a sum of random variables
x;, where pr(x) has the form shown in (a) for j odd and in (b) for j even. Density functions for
X, + X3, X; + X, + X3, and X, + X + X3 + X, are shown in (c), (d), and (e), respectively. Note
that even though the constituent densities were decidedly non-Gaussian, (¢) is already an ex-
cellent approximation to a Gaussian.

It is most convenient to work with normalized random variables having .

zero mean and unit variance. Therefore, we define
xj = (xj - )—C)/axa (372)

{ = (z—3)o.. (73

Note % and a2 do not require the subscript j, since all of the x; have the same

statistics. It is easy to verify that
<XJ> = 0,
=0,

Now the mean value of a sum of statistically independent random variables:
is just the sum of the mean values of the individual variables, and similarly,-

the variance of the sum is the sum of the variances. Therefore,

z = NX,

=1, (3.74) |
ot = 1. (3.75).

62 = No2. (3.76)
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These relations enable us to restate (3.68) in terms of the normalized variables

{ and y;:
1 ¥ z 1 d X
C = l:_ x|l -—=] ——— — Nx
o 55| e | Ve, XM wm,,

. 1 N XJ — X 1 N
=N LZ . ]= N jZ 1 (3.77)

=1 =1

The characteristic function for ¢ is

M(4) = {exp(—2miL))

N
= <exp(—2ni}~N—”2 Y l,-)>- (3.78)
j=1

However, because the i
ver, %, are independent and have the same statisti i
equation becomes tatistics this

M (%) = {exp(—2miAgN 12N = [M (AN~ 13N, (3.79)
where again the subscript j on g is superfluous within an expectation value.

If M, (AN~'2) is sufficiently well behaved, it
Taglor 2ien , it can be represented as a

M (AN 1) = < 3 [—2niixN‘”2]n/n!> L (3.80)
N n

n=0

where the term of order AN ™!/% vanishes since ¢ i

' ! rder 2> = 0. The next term in
Fhe series varies as N J2if (x> 5 Oandas N 2if (x> = 0. As N approaches
;nﬁmty, these hlgher-order terms become negligible. The term of order 1/N
is, however, still important, as we can see by taking the logarithm of (3.79):

In M,(4) = NIn M, (AN~ 17?)

= Nn[l — 2n22%/N)] w=2 (—2n243), (3.81)
since
lim In(1 =
lim n(l +¢)=e. (3.82)
Therefore we have
M (}) = exp(—2a%4%) (3.83)

and an inverse Fourier transform [see Eqgs. (B.37) and (B.12)] yields

pri({) = # 1 {M(D)} = 2n)™ ' exp(—(?/2). (3.84)
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Comparing this equation to the standard form for the Gaussian distribution,
(3.58), we see that is indeed a normal random variable with zero mean and
unit variance as expected. In terms of the original variable z,

o= Lpr0 = aaty mon(Z5 D), 089

¥4

where 7 and ¢, are given by (3.76).

3.3 POISSON RANDOM PROCESSES

In this section we introduce a type of noise that has its origin in the
discrete, quantum nature of electromagnetic radiation. A radiation detector
does not continuously absorb energy from the radiation field, but rather
does so in increments of hv, where v is the frequency of the radiation and h
is Planck’s constant. Therefore, the output of the detector cannot be a
smooth, unvarying measure of the intensity of the field, but must exhibit
fluctuations known variously as quantum noise, photon noise, or Poisson
noise. Much the same problem arises in electronics where currents suffer
fluctuations, usually called shot noise, due to the discrete nature of electrons.

Quantum noise plays a crucial role in radiographic imaging systems,

primarily because hv is so large for x rays and gamma rays. Coupled with the ‘5
necessity of limiting the radiation dose delivered to the patient, the large .

energy per quantum means that the final image will consist of a relatively -
small number of detected quanta. As an extreme example, a nuclear medicine
image of the heart—one frame of a dynamic cardiac study—usually consists
of less than 5000 detected gamma rays. A more typical static nuclear image |
would consist of 500,000 detected quanta, while a diagnostic x-ray film used g
with a fluorescent screen would be exposed to a usable density with 107 x-ray :
photons/cm?. For comparison, a typical photographic film exposed to light
requires 10''-10'? optical photons/cm? for a useful picture. With so few
detected quanta, it is not surprising that quantum noise is usually the:
dominant form of noise in radiographic images. Accordingly, we shall give?
considerable attention to quantum noise in this book ; the necessary mathe-:
matical background for its analysis is presented in this section. ;

3.3.1 Derivation of the Probability Law ‘
b

The derivation given in this section closely parallels the discussion of
electronic shot noise by Davenport and Root (1958).
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TheCi;)(l)ltscl)der.once agai(ril adetector viewing a radioisotope gamma-ray source

pe 1s assumed to have a very long half-life :

. -life, and the source-detector

geometry is held fixed so that station isti (This
et . ary statistics are applicable. (Thi

restriction will be removed in Sectio " _t
n 3.3.4.) We also a for simplici

that the detector is ideal and bt imoneront
, responds to every photon that impi i

However, as we shall show in Secti o £ hat no aseentin]
, ection 3.4. i i

oever, 8 we sha n 3.4.4, this assumption has no essential

. (3;2 értrégu_edlate gl:)al is to calculate the probability that exactly K photons

in an observation time T. Three physi
' . ve . . ysically reasonable assump-
tions about this probability, which we denote by Pr(K in T), will be rrllladg'

( ) >
a Ihe Iluﬂlbel ()f ph()tons detected in the l]lterval (0 1 18 Stdtlstlca]ly
)

(b) The probability of detectin i
' pro g one photo ishi i
interval AT is directly proportional to A’II“), ie. fina vamishingly small time

i . _
A;To Pr(1in AT) = aAT, (3.86)
where a is a constant.

() The probabilit i
rerero p ity of more than one photon being detected in AT is

i . .
A;To {Pr(0in AT) + Pr(l in AT)} = 1. (3.87)

imelr\ic;v olﬁeis ?}(:t;riligerthe probability that no photons are detected in an
g T. The only way this can occur is i

val o it , 1 s if no photons a

detected in the interval (0, T') and no photons are detected in tI;le adjacerr::

interval (T, T + AT). By as i . :
50 that ). By assumption (a), these two intervals are independent,

Pr(0in T+ AT) = Pr(0in T)Pr(0in AT). (3.88)
By substitution of (3.86) and (3.87) into (3.88), we find
lim <Pr(0 inT+ AT) — Pr(0 in T)) _d

AT I {Pr(0in T)}

AT-0

= —aPr0inT).  (3.89)

. This elementary differential equation, along with obvious boundary condi-

tion, Pr(0 in 0) = 1, has the solution

Pr(0in T) = exp(—aT). (3.90)

T +N[;)¥ <I:(f)2s;1der the probability that K photons are detected in the interval
A a. - 0, only zero or one of these K photons can be detected in
; y assumption (c). There are thus two mutually exclusive ways to find

|
|
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exactly K photonsin T + AT, viz., either K in T and 0 in AT, or K — l_itn T

and 1 in AT. Again the intervals are independent, so that we may write

Pe(KinT+AT)=Pr(K—1inT and1in AT)+Pe(KinT aninn AT)
= Pr(K — 1in T)Pr(l in AT) + Pr(K in T)Pr(0 in AT)
= Pr(K — 1in T)aAT + Pr(K in T)[1—-aAT], (91

where (3.86) and (3.87) were invoked in the last step. Rearranging the terms
in (3.91) and passing to the limit, we find

(Pr(K inT+ AT)—Pr(Kin T)

i +aPr(K in T)
lim >
AT—0 AT

= 4 {Pr(K in T)} + aPr(Kin T) = aPr(K—-1in T). (392
aT
i i i i inhomogeneous differential
Pr(K — 1 in T) is known, (3.92) is a linear, in .
Iefqu;fion for the unknown Pr(K in T); it may thus be regarded as a recursion

relation for Pr(K in T). By means of the usual integrating factor, the solution
of (3.92) is found to be

Pr(K in T) = aexp[ —aT] f: exp[aT']Pr(K — 1 in T')dT’, (3.93)

iti in 0) = 0 has been used.
where the boundary condition Pr(K in : .
To use this recursion relation, we start with K = 1. Since we have already

determined in (3.90) that Pr(0 in T) = exp(— aT),
Pr(l in T) = aexp(—aT) J‘OT exp(aT)exp(—aT")dT’
= aTexp(—aT). (394)
Continuing this way, we have
Pr(2in T) = aexp(—aT) L)T exp(aT’)exp(—aT")aT' dT’ |
= (a*T?/2)exp(—aT), (395) -
Pr(3in T) = aexp(—aT) jor exp(aT’)exp(—aT)@*T?/2)dT’

= (@®T3/3 + 2)exp(—aT), (3.96)
and so on. . ]
The general rule is !
Pr(K in T) = (a®*T*/K!)exp(—aT). (397);

This result is the Poisson probability law or, loosely, the Poisson distribution.,
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3.3.2 Properties of Poisson Random Variables

Let us inquire more closely into the nature of the constant a that was
introduced in (3.86) above. Since a AT is the probability that one photon is
detected in AT, and the probability of more than one being detected vanishes
as AT — 0, the quantity a AT may also be interpreted as the mean number of
photons detected in AT. So, at least for the small interval AT, a is the mean
number of detected photons per unit time. Furthermore, since we assumed
stationary statistics at the outset, the mean number per unit time must be a
constant and aT must be the mean number detected in T, ie,

K> =aT. (3.98)

This important result can also be verified by directly calculating (K> from
Pr(Kin T):

oW

<K) =3 KPr(KinT)

k=0

© KK
=exp(—aT) ), K (a KT, ) (3.99)
k=0 H

To evaluate this sum, note first that the K = 0 term vanishes since 0! = 1.
This permits us to run the sum from K = 1 to oo rather than 0 to oo. Next,
define L = K — 1 and observe that K/K! = 1/(K — 1)! = 1/L!. Therefore

+1
® GLtiplel

K> = —aT _
(K> =exp(—a )Lgo T

aLTL
LU

= exp(—aT)aT Y (3.100)
L=0

But this latter sum is merely exp(+aT), so that (K} = aT as expected.

Henceforth we shall write K for aT. Furthermore, since the time interval

T no longer appears separately, we shall simplify the notation by writing
Pr(K) for Pr(K in T). Thus,

Pr(K) = exp(— K)K¥/K . (3.101)

The procedure used to find (K} can also be used to find the variance of
K. We have

ok = (K- K)*) = (K?*) — K?

_.* (KK _
K=0 :
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Again, the K = 0 term vanishes so that

g) 3 K K> 103
of(:[exp(——K) Ks!(m)K]—K . (3 )

With L = K — 1, we may rewrite the sum

© K’L+1 .
Jﬁ:[exp(—lz) Y ( X >(L+1)]—K
L=o !
alz 5 (k5 (B)|-r2 a4
= cxp(—K)[K LZ‘O (—L-'>L +K Lgo (—L—')] K2 (3.104)

i i ince it i isely the one that occurred
first sum is readily evaluated since 1t 1s precis _ !
;l;lhfexn;isng {K>. Therefore we already know, by comparison with (3.99), that

) e L _
y _ng'_ — Rexp(+K). (3.105)
L=0 ‘

The second sum in (3.104) is just exp(+ K), so we have finally
st=K. (3.106)

This is the main distinguishing feature of Poisson random variables: the
iance always equals the mean. . . B

“ A simple Zorollary to this result is that' the ratio Qf the mean Ié ;ICI){ thic;

standard deviation o, often called the signal-to-noise ratio or ,

given by

SNR = K/ox = K. (3.107)

i ime; ion of the
The rms accuracy of a counting experiment, expressed as a fraction

mean count, is just the reciprocal of the SNR and hence the reciprocal of the

square root of the mean number of counts.

K i : in Pr(K), we should be able

i the only parameter that appears in ¢ she :

to S?;?; :ll{(rri)m:nts oyf Ip( in terms of K. This is indeed posslble, although \;VZ ‘
shall not derive it here. The result is given by Metz (1969) in the form o .

recursion relation:

m=l fm—1
K=K % ('" | )(K’), (3.108) |
= N

where ("7 !) is the binomial coefficient defined by

my__ml (3.109)
1) T m = !

oo b b s s et s e o+ 1
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The first few moments are
(K> =K?+K,
(K* =K?*+3K*+ K, (3.110)
(K*> = K* +6K®* +7K® + K.
The first few central moments are
(K- R =K,
(K~ Ry =K,
(K- K)*>=3K?*+ K, (3.111)

{(K—-K)*>=10K*+ K,
(K- K)*» =15K° + 5K* + K.
Of course, all of the moments can be derived from the characteristic
function, given by
Mg(4) = (exp(—2milK))

ic K

= exp(— K) i (TI%) exp(—2rilK)

= exp(— K) nzo: [K exp(—2mid)]*/K !
K=0

= exp{— K[1 — exp(—2zil)]}. (3.112)

This rather bizarre expression for Mg(4) makes it easy to determine the
behavior of a Poisson distribution for large values of K. The first point to
be noted is that M (1) is a periodic function of 2, which is a consequence of

K being a discrete random variable. Thus we can expand M k(A) in a Fourier
series of the form

M) = fj Pr(K)exp(— 2miK ). (3.113)
K=0

* To see that the Fourier coefficients are just the Pr(K), we can take a Fourier
. transform of (3.113) and produce a probability density function in the form
- of a sum of delta functions as in (3.21). The Pr(K) are given by the usual
- formula for Fourier coefficients (B.83), which involves an integral over the

basic period —§ < 4 < 4. However, if K is large, M 4(1) will be small unless
1 — exp(~—2mid) is small. Within the basic period of 4, this condition implies
‘that 4] « 1, and immediately suggests an expansion of exp(— 2=zid) in powers
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of A. This yields, with (B.83),
Pr(K) = j _"12/2 M (3) exp(2niK2) di

172
“J-12

exp[ — KQmid + 22247 + - +°)] exp(2niK 1) dA

~ j © exp[ — R(2nik + 2n2A%)] exp(2niK ) di
= (2aR)~*exp[ (K — K)?/2K}, (3.114)
where the last step follows from (B.13), (B.14), and (B.37). Thus Pr(K) ap-

proaches a Gaussian for large K, a result that could also have been anti-

cinated from the central-limit theorem. . o
’ A graphical comparison between the exact Poisson distribution, (3.101),

and the Gaussian approximation, (3.114), is given in Fig. 3.4. As a rule of

frue Poisson

Gaussian approximation

XS %3
L K
o} [§)
c 0.2r
o
E
B8
B
o
0.l
> 5
:—é
Q
=)
Q
a

Ql

¢} 2 4 6 8 0 12 4 16 18 20 -

Fig. 3.4 A comparison between the exact Pois;on .disu.-ibution and the Gz.lussian aﬂprom—f K
mation to it for K = 3, 5, and 10. The Poisson distribution is defined only for integer vaiues ?S,

K, indicated by the vertical bars, and the dotted line is simply a smooth curve through the poun
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thumb for numerical calculations, the Gaussian form is an excellent approxi-
mation for K > 10.

3.3.3 Poisson Impuises and Statistical Averages

The quantity Pr(K) does not fully describe the statistics of our hypothe-
tical counting experiment. In many cases, we also need to know the statistics
of the arrival times of individual photons. If the jth photon out of the group
of K detected photons arrives at the detector at time t;, then t;is a continuous
random variable of domain (0, T') and probability density function pr(t)).
We have chosen the subscript ¢ rather than j or ¢; for pr,(t;) since there is
nothing special about the jth photon. The index j merely labels the various
photons and says nothing about the order of arrival. The photon for which
j =19 could well arrive before the one with j = 2. All photons must have the
same probability of arrival during any specified finite time interval. Indeed,
it follows from assumption (a) of Section 3.3.1 and the assumption of
stationary statistics that pr,(¢;) is a constant over the interval (0, T'). For
proper normalization, this constant must have the value T !, i.c,,

T ! if 0<t;<T
pr,(t) = {0 J

A more rigorous proof of this equation can be given (see Davenport and
Root, 1958; Papoulis, 1965), but since it is so appealing on physical grounds,
we shall regard it as an article of faith. Equation (3.115) is at least as “obvious”
as assumption (a) from which it can be derived.

The arrival of photons at the detector can thus be described in terms of
a random process z(t) given by

otherwise. (3.113)

z(t) = i 8t — 1. (3.116)
j=1

If each arriving photon produces a voltage pulse of the form Vy(r — t)) at the
output of the detector, then the overall voltage from the detector is the
random process V(t) given by

V() = -21 Volt — 1) = Volt) * 2(2). (3.117)
=

The process z(t), often called a sequence of Poisson impulses, is thus intimately
* related to the observed random voltage at the detector output. The statistics
. of z(t) will therefore be examined in some detail.

First, let us calculate the mean value of z(t). Note that there are K + 1
. random variables in this problem—the K arrival times t; and K itself. All
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of these random variables are statistically indepenc.ient, and we have already
determined Pr(K) and pr,(t;). Therefore we can write

K
(2(t)y = K;) Pr(K) f: pr.(t;)dt, f; pritz)dts - foT pr,(tg) dix ,; ot — 1))
(3.118)

Now pick any one term in the sum over j, say the one for \}vhich j=17.Al
of the integrals except the one over t;, have t‘ht‘: foFm i8 pr',(tj)dt,-; from
(3.115) each of these integrals is unity. The remaining integral is

(7 prdes) 8¢ = i) deys = pr =T (3.119)

assuming that 0 <t < T. ‘ - _

Of course the choice j = 17 was quite arbitrary, and it is reassuring that
the number 17 does not appear in the result. Each of the K terms in the
sum over j gives the same result, so that (3.118) becomes

ol

=T y KPr(K)=—. (3.120)
@y =T ¥ KPr(K)=7
The expectation value of z(f) is thus the mean number of detected photons
per unit time, which is the constant a from Section 3.3.1.
Now we turn to a slightly more complicated problem and calculate the

autocorrelation function for z(t). By analogy to (3.118), we have
K K
R (1) = < Y ot —tp Y o+ tk)>
j=1 k=1

_ 3 pr(K) [T prdede [ prie)de, -
o 0 0

x jOT pr(te) dex i i 3t —t)dt+r 1) (121)°

j=1 k=1

There are a total of K terms in the double sum over j and k. Of these', K
terms have j = k, while the remaining K> — K terms have ] # k. Cons1gler :
first the case where j = k. As in the calculation of {z(t)), we pick out a'parFlc- :
ular term from this group of K terms, for example the one fqr whlch j=.
k = 17. Again all integrals except the one over t,; reduce to unity, while thei

one over £, has the form

for prit 1) 8(t — t17) 0t + T — ty7)dtyq. (3.1222
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Integrals with two delta functions in the argument present no difficulty if
one of them is replaced with one of the various limiting forms for delta func-
tions discussed in Appendix A [see (A.7)-(A.11)]. This delta function may
then be treated as an ordinary function, and the sifting property (A.1) may
be invoked for the other delta function in the integrand. In (3.122), by this
argument, the delta function 8(t — t,) sifts out values of ¢, for which ¢ —
t;7 = 0. The expression (3.122) then becomes

5()pr.(t) = T~ 8(x). (3.123)

Once again, the number 17 does not appear in the result, and all K terms have
the same value. The contribution to R,(r) from terms in which j =k is
therefore

[R@)jox= T-'5@) 5 KPr(K)= BT~ 3(x). (3.124)

We now consider the K? — K terms for which j # k. Consider a particular
pair of values for j and k, e.g., j = 17 and k = 9. Now all integrals except the
two over t; and tq reduce to unity, while these two factor as

T 1
Jo prtess)3te = tidtsy [ o3t + 2 = t9) = pr@prie + 9 = o,
(3.125)

where the last step requires both that 0 <t < T and that 0 < (t + 1) < T.
Neither 9 nor 17 appears in (3.125), so all K> — K terms must yield the
same result. The contribution to R,(t) from terms in which j # k is thus

[R.(x)]j5r = T2 Z (K> — K)Pt(K) = T"%K: ~ K. (3.126)
) K=0

However, from (3.110), {K? — K)> = K2.
Our final result for R, (1) is

R ()= [Rz('f)]j=k + [Rz(T)]jaek
= KT '6(c) + K*T" 2 = aé(1) + d?, (3.127)

. where a is again K/T, the mean number detected per unit time. Since only

a,and not T separately, appears in R,(t), we may as well let T — oo and have

< no further worry about whether ¢ or ¢ + ¢ lies in the interval O, T).

Equation (3.127) will be important to our understanding of noise in

. radiographic imaging, but not quite in the form given. Instead, we shall more
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often be interested in Poisson impulses that are randomly distributed in
space rather than in time. Consider, for example, the spatial random process
u(r), given by

u(r) = il & —ry, (3.128)

where r and r; are both two-dimensional vectors but only the latter isa
random variable. The process u(r) could represent the distribution of re-
corded photons on the crystal of an Anger camera or on a piece of x-ray film.
If the detector area is A4 and the photons are uniformly sprinkled over this
area, the probability density function for each of the random variables r; is
given by

pr,(r) = A3 (3.129)

if r; lies in A,. Furthermore, K is a Poisson random variable since the fact
that the detector is capable of determining the position of each photon, as
well as merely recording its presence, has no effect on the total count. The
derivation of Pr(K) given in Section (3.3.1) still holds.

There is thus a complete formal equivalence between z(t) and u(r), and
we do not need to repeat the calculation. We can write at once that

u(r)y = K/Aq (3.130)
and

R (L) = {u(rju(r + L)> = (K/A9)6(L) + (K497, (3.131)
where L is a two-dimensional position vector and we assume that both
r and r + L fall within 44. -

Equation (3.131) will serve as the starting point for our analysis of noise
in radiographic imaging.

3.3.4 Nonstationary Poisson Processes

Our entire discussion of Poisson random processes 0 this point has :
assumed stationary statistics. In the case of temporal Poisson processes,
the mean number of detected photons per unit time was assumed to be ’
independent of time, the probability density for the arrival times was assumed *
to be constant, and the autocorrelation function for a sum of Poisson im{;
pulses was shown to depend only on the time difference © and not on thef“

actual time . Similarly, in our brief discussion of spatial Poisson processes;’
we assumed that all locations r; were equally likely and that the autocorre?
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lation function for u(r) depended on the difference vector L and not on the
actual position r.

Now, in real physical problems, we can be almost guaranteed that
stationary §tgtistics are not exactly correct. In the temporal case, radioactive
decay, variations in source-detector geometry, and simply turning off the
apparatus at the end of the day all cause deviations from strict temporal
stationarity.

' Nonstat‘ionarity is even more important for spatial Poisson processes
since a stationary spatial distribution of photons is not an image except in
the most trivial sense. As the examples given in Chapter 1 show, it is the
dc:av1at10ns from uniformity in a radiographic image that convé:y useful
diagnostic information.

Fortunately, it is not difficult to generalize our discussion of Poisson
processes to the nonstationary case. Let us first review the derivation of
Pr(K) for the case where a, the mean arrival rate of photons, is a known (non-
random) function of time. Since it is straightforward to retrace the arguments

of Section 3.3.1, we simply present here the generalized equations without
commentary:

(386) lim Pr(lin AT) = a(T)AT, (3.132)
d

(389) > = Pr(0in T) = —a(T) Pr(0in T) (3.133)

(3.90) - Pr(0 in T) = exp( - foT a(t)dt) (3.134)

(391) > Pr(K in T + AT) = Pr(K — 1in T)a(T)AT
+ Pr(K in T)[1 — a(T)AT), (3.135)

d )
(392)— = Pr(K in T) + a(T) Pr(K in T) = a(T)Pr(K — Lin T), (3.136)
(393) > Pr(K in T) = exp<~ for a(t) dt) fo" a(T)

-
X exp(fo a(T”)dT") Pr(K — 1in T")dT", (3.137)

(394) > Pr(1in T) = exp(— fOT alt) d:) foT o(T")dT, (3.138)

T K
(397) - Pr(K in T) = {( fo a(T’)dT’) / K!}exp(— f: a(t)dt). (3.139)
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In other words, our previous expression for Pr(K) is still valid so long
as we take

R = LT a(e)dt, (3.140)

instead of just aT. o '
The discussion of Poisson impulses in Section 3.3.3 also'generahzes
readily. The point of departure is (3.115) which, in the nonstationary casc,

must become
pr(t) = a(t) / J:,T a(t')dt' = a(t)/K, (3.141)

provided 0 < t; < T. Equation (3.141) merely st.ates tha_t the pro})ability
of any one photon arriving in some specific time interval is p'roport_lonal. to
the mean number arriving in that interval. The main effect of this modification
is to replace T™! by a(t)/K at most places in Section 3.3.3. For example,
(3.120) becomes

2@ty = a(b). (3.142)

A little care must be exercised in finding the autocorrelation function for
z(1) in the nonstationary case. The basic definition is [cf. (3.121)]

K
R,(t,t+17)= < i ot—1) ) d(t+t— t,,)>. (3.143)
j=1 k=1

Most of the derivation is the same except that (3.125) becomes

pr(t) prt + 1) = a(t)alt + 7)/K>. (3.144)

The final result is |
R,(1,t + 1) = a())d(r) + a(Dalt + 7). (3.145)

The most obvious difference between R.{t,t + ) ‘in (3.145.) gnd. R,(1) ©
in (3.127) is in the second term. Yet even this difference is rather insignificant :
as we can see by considering the zero-mean random process Az(t) defined by :

Az(t) = z(t) — <2(t)>- (3.146) -
In the nonstationary case, with {z(t)> = a(t), we see that T-
Ry, (t,t + 1) = (Az() Az(t + 7))

= R,(t,t + 1) — (2@)><2(t + ) ;
= a(t) 6(z). (3.147)

5

&

The corresponding result for the stationary case is quite similar: ;
R, (1) = ad(1). (3.1482
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The treatment of spatial Poisson impulses is identical. Equation (3.129)
becomes

pr,(r) = hr) / (f h(r)dzr), (3.149)

where h(r) is the mean number of detected photons per unit area, and the

integral runs over the area of the detector. The random process u(r) then has
a mean of

{u(r)) = h(r), (3.150)
and an autocorrelation function of
R, (r,r + L) = h(r) 6(L) + h(®)h(r + L). (3.151)
For the zero-mean process Au(r) = u(r) — <{u(r)}, we have
R, (r,r + L) = h(r) 3(L). (3.152)

3.4 THE BERNOULLI DISTRIBUTION

The Bernoulli or binomial distribution arises in binary selection processes
(Fig. 3.5) in which there are only two possible outcomes of a basic experiment.
For example, a coin is flipped n times. The only possible outcomes of each
flip are heads, which has probability p, and tails, which has probability
g =1 — p. The number of heads in » trials is the random variable k, with
probability Pr(k|n), which is written as a conditional probability in antici-
pation of n becoming a random variable. For now, however, n is a fixed
number.

As a second example, consider a detector on which exactly n photons
fall during an observation time. Each photon is either detected or it is not;
again the selection process is binary. If the probability of detection is p, then
the probability that k out of the n photons are detected is the same Pr(k|n) as

~ in the coin flipping case.

Fig. 3.5 Block diagram of a system described by a Bernoulli distribution. Exactly n
-items are presented at the input, with each of them being either accepted (probability p) or
1ejected (probability g = 1 — p).
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3.4.1 Binomial Probability

Suppose we are given exactly n identical items and accept or reject each
randomly. We assume that each item has a probability of selection of p,
and that each selection stage is independent of all other stages. One way in
which exactly k items could be selected would be to select the first k and
reject the remaining n — k (where n = k). The probability of this particular
sequence occurring is p*(1 — p)"~*. However, this is by no means the only
way in which k items could be selected. For example, the first item could be
rejected, the next k selected, and the finaln — k — 1 rejected. This sequence
would also have probability pi(1 — py k. Tt is well known that the total
number of ways of selecting k items from a group ofn {tlems is the binomial
coefficient (2) defined in (3.109). Each of these ways of selecting k items is
mutually exclusive of all other ways. Therefore

Pr(k|n) = (Z)p"(l —prt if n>k (3.153)

Of course, k items cannot be selected if there are less than k to choose from,
so Pr(k|n)=0ifn< k. This expression for Pr(k|n) is called the Bernoulli
or binomial distribution.

3.4.2 First and Second Moments

To calculate the moments of k, we shall first determine the characteristic
function (Papoulis, 1965). From (3.37)

n

M, (%) = {exp(—2milk)) = Y (Z) exp(—2miAk)p“q" ¥

k=0
=) <Z> [pexp(—2midy)q" ", (3.154). -
k=0

where g = 1 — p. The binomial theorem of algebra states that :
@+by=3 [ )ab* (3.155)

K=o \k

Therefore, :

M, () = [pexp(—2mid) + 41" (3.156)

Application of (3.39) shows that ,
k=<k)= (—2zi) " [dM(A)/dA]1=0 = np(p + @ " = np, (3.157)
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since (p + ¢) = 1. Similarly,

2 _ oy —
0 = (=20 M0 = + 1t =
= npq + n*p*. (3.158)

Therefore the variance of k is

2 __ 2
oi = <k*) — <k>* = npq = np(1 — p). (3.159)
3.4.3 Limiting Behavior

Consider the limit n —» oo and i
T . p—0 in such a way that np remai
constant at k. The characteristic function may be written, in terms f)f k andlr:1s

kL k
M,(A) = <l - + " exp(— 2ni,l)>

But it is well known that

(3.160)

lim (1 + a/n)" = €~ (3.161)

n—2w

This equation is, in fact, often regarded as a definition of e. Therefore

51_'12 M(4) = exp{ —k[1 — exp(—2mid)]}. (3.162)
Comparison with (3.112) shows that (3.162) is j

: (3.112) .162) is just the characteristi ot
for the Poisson distribution. Thus the binomial distributiorf ::;r)lsﬂ)cafcuhr::(;nt(l)lrel

Poisson in this limit, That this result i
nmit. 1 hat this ult reas A e ale
(157 and (3.159): ult 1s reasonable can also be scen from

lim [63/<k>] = lim ¢ = lim (1 — k/n) = 1. (3.163)

N
nr o n= oo "o o

hus in th]S llmlt thC arianc € Mg
I us, , v e equals th an, which i
. I q an, which is the hallmark of the

‘ 3.4.4 Cascaded Random Processes—Poisson Source

The binomial distribution is appli
pplicable when k items are sel :
random from a fixed number of possibilities n. In most physical p:(ftt)(;::lln‘:t

,5 lllcévrve!:;;nthlc) numbe'r of possibilities should itself be a random variable n
s ;)u((,:,inn Oitlcal photons may strike a photomultiplier, with k of
B emittedgbp otoelectronvs (where k < n). Or n gamma-ray photons
gy Do o y a source, with k of them producing a count in a distant
or. In these problems, the binomial distribution describes the condi-

lional probability Pr(k|n) but not the overall probability Pr(k), which is
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given by [cf. (3.9) and (3.11)]
Pr(k) = Y, Pr(k|n)Pr(n). (3.164)

n=0
We now consider the form of Pr(k) when Pr(n) is Poisson (Fried, 1965).
Inserting (3.153) for Pr(k|n) and (3.101) for Pr(n) into (3.164), we find

n" !
Pr) = Y. expl=7) oy g PP

n=k

(3.165)

In spite of the formidable appearance of this equation, substantial simplifica-
tions are possible. Lettingm = n — k, we have

exp(—-ﬁ)pk '] ﬁm+k m
Prik) ==y L " 4P
=s§11—k‘r;_>ipﬁf io(_ﬁ;ml"_ﬁl" (3.166) -

The sum is just exp(@i — ph), SO
Pr(k) = exp(— pr)(p)/k!. (3.167)

In other words, Pr(k) is simply a Poisson distribution with k = pn.

This result is applicable to many cascade situations. If a source emits n-,
photons in random directions, where nis a Poisson random variable, then.
(3.167) gives the probability that k of them strike a detector if p is interpreted:
as the fractional solid angle Q/4n subtended by the detector. Since Pr(k) is;
still Poisson, the same result can be applied again to find the number actuaily
detected. In this case, p is the quantum efficiency # of the detector. Thus the
number of detected photons k, is also Poisson with mean kq = nk = (nQ/4n)i:
As a practical matter, (3.167) allows us to use simple, deterministic arguments
to calculate the mean value of the random variable at the end of the cascade,

and then to be confident that the fluctuations about the mean are Poisson if
the source is Poisson.

3.4.5 Cascaded Random Processes—Non-Poisson Source

We next consider the case where n does not obey Poisson statistics, but
has some unspecified probability distribution Pr(n). However, we shall not
calculate Pr(k), but only the mean and variance of k.

The mean is given by

&Ky = OZOL kPr(k) = i S k Pr(k|n) Pr(n). (3.168)
k=0 =0

n=0k
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The conditional probability is gi
[ y is given by (3.153 iti
tion value by (3.157). Therefore 2 )and the conditional expect:

k> =Y npPr(n) =7p. (3.169)

n=0

The variance of k is given by

o2 = 'Z:o kgo (k — 7mip)* Pr(k|n) Pr(n). (3.170)

According to (3.157) and (3.158), the iti
3- 158), conditional avera,
effect of replacing k with np and k? with npg + n*p? lea%?nzver ¢ has the

2 _ _
o = ;[npq + n?p? — 2nnp? + w2p?] Pr(n). (3.171)

lhe Iema]]llllg average g
g over n Ieplaces n Wlth n al d n- w 1ts average
n lth
<n >5 Whlc}l we write

N = ; n? Pr(n) = 62 + 7> (3.172)

Some simple algebra then yields

of = Tnpq + olp?. (3.173)

A more revealing form of thi: i fceq
$ equation art -1 T
pf to obtain d ses if we use g =1 — pand k =

a2 — k= pHa? — n). (3.174)

If nlzlve're a Poisson2 rarldom variable, we would have a2 =7 and (3.174)

:&;(;13 1mp1y that o3 = k, which is consistent with k also being a Poisson

Variaonréle \iarllx.‘lablet.hMore g;:nerally, (3.174) shows that the excess noise (the
inus the mean) scales as p?> when n is subj i i

: : 1€; jected to a binomial

selection with probability p. By contrast, if the noise were entirely Poisson

- we would have o2 = pa?.

An algebraically equivalent form of (3.174) is

a; o, (L—ppi
peEt (3.175)

or

1 1 1

(3.176)

SNR)? ~ SNR? T SNR)”

wh i
fére;eailij and SNR,, are the ratio of the mean to the standard deviation
n, respectively. SNR,, on the other hand, is the conditional SNR
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associated with the binomial process; ie., it is the ratio of the mean of
k to its standard deviation on the condition that the input to the process is

exactly 7.

3.4.6 Cross Correlation of the Input and Output

In Section 3.4.7 we shall need to know the cross correlation {AnAk).
The procedure for calculating it is the same as the one we just used. The

required average is
(AnAKY =Y Y (n —A)k — 7ip) Pr(k|n) Pr(n). (3.177)
n k

The conditional average over k simply replaces k with np, producing
(AnAK> =Y (n — R)(np — 7ip) Pr(n) = pY. (n— M) Prin) = po2, (3.178)

where the last step follows by the definition of the variance.

3.4.7 The Independent Nature of Poisson Random Variables

We shall repeatedly encounter situations in which two or more detectors

are receiving radiation from a common Source, and it will simplify the :

calculations if we can assume that the photon counts from different detectors
are independent random variables. However, it is not obvious that this is a
valid assumption. The source is fluctuating in the sense that the number of
photons it emits in one counting interval is not the same as the number it
emits in a different interval. The number emitted is the random variable
N,, while the number detected by detector A is the random variable N ,, and
the number detected by B is Ny. One might expect that when Ny happened
to be high due to a chance fluctuation, both N 4 and N, would also be high,
and conversely if N, happened to be low. If this were the case, (AN ANg)
would be nonzero and N, and N would not be independent.

Such a situation would be thoroughly inconsistent with the formalism:
developed in Sections 3.3.3 and 3.3.4. We considered there the Poisson:

random process u(r) [see (3.128)], in terms of which
N, = L u(r)d>r, (3.179)
Ny = IB u(r') d2r, (3.180)

where the integrals run over the areas of the respective detectors. The cross
correlation (AN, ANg) is given, with the aid of (3.152), by

(AN, AN = L & fB 42 hr)o(x — ¥) =0, (3.181)
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simce the aIgurIlellt Of tlle delta u 10 € € ]1 arca A and arca B
f nce
t1on never Vanlsh S T

unc’(l)"llrlg;ltlg du(ﬁrr) is a va}llid description of the process, AN, and AN, must be

. To see when this condition holds, let i

Eromm the besinins . i 8, let us reexamine the problem

g without imposing any restricti
. : ' : ions on th

dlsc;lslsmn will rely heavily on results from Section 3.4.5 © souree. The

cor t;ieptl(l)(;t(l)ns detected by detector A are a random (binomial) selection
al number N, = N, + N, that are detected by the two detectors.

The probability that on is, i
e e of the detected photons is, in fact, detected by A is

o pA=NA/Nt=NA/(NA+NB)~ (3.182)
Similarly, the probability that one of the detected photons is detected by Bis
pBZNB/Ntz 1 — PDy4- (3.183)
From (3.174), the statistics of N, are related to those of N by
4
s o _
o, — N.=pi[e}, — N.]. (3.184)
The cross correlation of AN, and AN, is given by (3.178) as
{AN,AN;> = p o3,
- 3
Therefore o
(AN, ANg) = (AN(AN, — AN )> = (AN, AN,> — 63
= path~ Ny p[oh - N,] (3.186)
But, by (3.182), N, = p,N,, whence
(AN ANy = I’,«ipB(O'lzvl - N!)a (3.187)

wh ¢ i
areelrlc:1 (\::/)e h?ve algo used pp = 1 — p4. This result shows that AN, and AN
. rrelated if N, obeys Poisson statistics, for in that case 62 — N, = OB
¢ can now go one step further and relate (AN, ANg) b(ack té) th'
properties of the source. Use of (3.174) shows that ’ )

ox, — N, = NA+& ? 7
S ( N, ) (N No) (3.188)

7 where N, is the number of i
f . photons emitted b
oo s the nuribe prphoions y the source. If we define overall

fa=Ny/No=p N, + Ny)/N,,
. fB=1\73/N0=pB(NA+N)/N
then we have o -

(AN ANg) = f, fy(aR, — No). (3.190)
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The important conclusion is that Poisson sources cannot produce correlated
counts in two different detectors. Only the excess noise, beyond that associated
with a Poisson source, can produce correlations. Poisson random variables
are inherently uncorrelated (Hanbury Brown and Twiss, 1956).

3.4.8 A Note on the Applicability of Poisson Statistics

Since the Poisson distribution plays such a fundamental role in radio-
graphic imaging, we shall reexamine the conditions under which it applies,
making use of the discussion of Bernoulli processes just given. The assump-
tions used in the derivation of the Poisson distribution in Section 3.3.1 can
be summarized by saying that we are dealing with identical, independent,
random events.

Whether or not the events are sufficiently near to being identical depends
on what measurement we are performing. In a photon-counting experiment,
all that matters is that the event is recorded. We may select certain events on
the basis of energy, spatial location, or other parameters, but the event is
recorded in a binary fashion—either it occurred and met all criteria for
recording or it did not. All recorded events are evidently identical. On the
other hand, if we record high-energy photons by allowing them to expose
photographic film, an additional degree of randomness is introduced. The
amount of film blackening produced by each photon is itself a random vari-
able, and the recorded events are no longer identical. In this case, the Poisson
distribution cannot be rigorously justified, although it may well be a useful
approximation.

The word independent in this context means that the number recorded
in a time interval AT, is statistically independent of the number recorded in
a different, nonoverlapping interval AT;. To appreciate this restriction, let
us construct a rather farfetched counterexample. Suppose we prepare a large

number of samples of a radioactive material, and arrange for each sample.
to contain exactly 12 radioactive nuclei. We then observe each sample for -

two half-lives, so that the mean number of decays isy-12+4%-6=9.The

histogram of the measured number of decays is a good approximation to the:
probability distribution for observing K decays in two half-lives, which we:
know to be a Bernoulli. It is easily seen that this distribution cannot be:

Poisson, because the maximum possible value for K is 12, while a Poisson
distribution extends to K = co. Furthermore, the deviations from a Poisson
must be substantial in this example because the difference between the mean
(9) and the maximum (12) is just one standard deviation (\/§ = 3). The
Poisson distribution thus predicts a fairly large probability of observing, say,
K = 13, which we know is impossible. )
The basic reason for the distribution in this example not being Poisson
is that the number of counts in different time intervals is not independent.
Suppose that all 12 of the radioactive nuclei happened to decay during the
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first half-hlfe, an unlikely but not impossible occurrence. Then the number
of decays n the second half-life is completely determined—it can only be
ZEro. S‘unllarly, whatever the number of decays in the first half-life, they
determine the number of radioactive atoms left and therefore inﬂuen;:e the
number of decays in the second half-life.

Of course, all of this discussion is based on the premise that the various
samples all cpntain exactly 12 radioactive nuclei. If we modify the experi-
mental conditions somewhat (and make them more realistic) by assuming
that Fhe sz.lmp_les are drawn at random from a large supply of material, then
the situation is quite different. If the number of radioactive nuclei in, each
:lal.mple is Pmssor(:1 distributed with mean 12, then a calculation analogous to

¢ one presented in Section 3.4. i
he one presented in Sec 44 shows that the number of decays in two

A more interesting question concerns the conditions that must be placed
on the supply gf material from which the samples are drawn in order for the
number of radioactive nuclei per sample to be Poisson distributed. Suppose
the supply'contains a total of N, nuclei, pN, of which are radioactive and
gN, of 'vw./hlch are nonradioactive. If we choose M nuclei at random, the
probability that K of them will be radioactive is the Bernoulli distrib\;tion
(3.153), which in the present notation is

M
Pr(K) = <K)P"4M"‘- (3.191)

If, hoyvever, the supply N; is very large but consists mainly of nonradioactive
nuglm (p small), then this equation may be a good approximation to a
Pmsspp. To be precise, consider the limit N, — oo and p — 0. The nurl;bc;; of
nuclei in each sample M must also tend to oo if each sample is to have a
nonzero.number of radioactive nuclei. If M — oo and p — 0 in such a wa
that their product pM approaches a constant, then, from Section 343y
Pr(K) approaches a Poisson of mean K = pM. ’ o
From this result we can be virtually guaranteed that Poisson statistics
are applicable in radioactive counting problems, because the supply is
ultm.xately enormous. Whatever sample we have in our laboratory carf be
cons@ered as a random selection from some larger supply which in turn is a
selection f.rom a still larger supply. The ultimate supply (the universe?)
clearly satisfies the limiting condition for a Poisson distribution, while tﬁe

' cascaded selection process, by the result of Secti
’ : X ction 3.44, pr
. Poisson property for all smaller samples. preserves the

One final comment concerns the statistics of nonstationary counting

.’,; prob.lems.. In Section 3.3.4 we showed that a Poisson distribution was
,,,obtalngd}n.the nonstationary case if the mean photon arrival rate a(t) was a
:ﬂdeterzmmstlc function of time. Examples where this is the case are easil

‘constructed. For example, in radioactive decay problems we have a(t)cZ

exp(—t/t). Also, if the source is modulated in some manner, a(t) is under the
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control of the experimenter. In these cases, the ensemble distribution of
counts over any specified time interval must be Poisson, although the
distribution observed in successive measurements on one member of the
ensemble of apparatuses will, in general, not be Poisson.

The situation is very different if a(t) is itself a random variable. Consider,
for example, a photomultiplier detecting visible photons from a gas discharge
lamp. The average intensity of the light source is quite random because of
variations in current through the lamp and interference of radiation emitted
independently by different atoms in the gas. The photocount distribution,
even in an ensemble average sense, must then involve the distribution of the
random variable a(t). The uncertainty in a(t) produces a further broadening
of the photocount distribution over and above that predicted by Poisson
statistics, and in general, the variance will exceed the mean. The Poisson
distribution, where the variance equals the mean, normally represents the
irreducible minimum spread in photon counting distributions, and occurs
only when the mean arrival rate a(f) is a deterministic function.*

3.5 FILTERING OF NOISY SIGNALS

As we showed in Chapter 2, imaging systems may be regarded as linear :
filters. Furthermore, even after an image is formed, it is often desirable to :

pass it through another linear filter. This second filter could be for image
enhancement——for example, noise smoothing or deblurring—or it could be
essential to the imaging process as in computed tomography and coded-
aperture imaging. In any case, we cannot fully analyze radiographic images
unless we know the effect of linear filters on noisy signals.

The noisy signals discussed in this section may be classified in two dis-

tinct ways. On the one hand, we shall speak of spatial versus temporal noise."

Examples of temporal noise, or random processes where the independent’
variable is time, include the video signal in a fluoroscopy system, the voltage
output from an ultrasonic transducer, and the ratemeter output in a nuclear:
scanner. Spatial noise refers to point-to-peint statistical variations in an
image. On the other hand, we may classify noisy signals, either temporal or
spatial, as being stationary or nonstationary as defined previously. .

The distinction between spatial and temporal noise, while obviously
important physically, is rather trivial mathematically. Once a result is derived
in the temporal case, it may easily be transcribed to the spatial case by
replacing the time ¢ with position r and temporal frequency v with spatial

* Some exceptions to this statement have been reported in the literature on nonlinear
optics, but they appear to be of no concern for radiographic problems. See Sibilia and Bertolotti
(1981) and references given there.
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frequency'p.. Fo‘r notational simplicity we shall deal with temporal noise

The distinction between stationary and nonstationary noise is moré
profounq mathematically. In particular, Fourier theory is the easiest way to
treat stationary noise but is not directly applicable in the nonstationary c}ellse
Therefore we devote separate sections to stationary and nonstationary noise:

3.5.1 Stationary Noise

Consider a li.near shift-invariant filter with temporal impulse response
p(), and let the input to the filter be the stationary random process w;,(¢)
The autocorrelation function of w,,(t), defined by o

Riy(1) = {Wi(t)Wi(t + 7)), (3.192)
is presumed to be known. Therefore the in i
TesU i put power spectral d ;
which is the Fourier transform of R, (z), is also known.p ensity Sl
The random process w;,(¢) is converted by the filter into another random
process W, (t) measured at the output of the filter. That is, when the input

to the filter is one sample function w;( i
. w{t) Of the input process, the o i
the specific sample function w,,(t) giv::n by ’ ’ vipuLs

Woult) = p(0) * winlt) = [ dt' p(e it — 1), (3.193)

The autocorrelation function of the output signal is

Rou((’c) = <woul(t)wout(t + T)>

= < f O dr f At p(E (L Wt~ Wt + T~ [")>. (3.194)

' .To proceed fu.rther, we should like to take the expectation-value brackets
inside Fhe double integral. This step can be justified by writing the expectation
valge in terms of the joint probability density function for the two random
variables w;,(t —t') and wy,(t + 7 — t”). To simplify the notation, let us

temporarily call these two variabl " " 1 1
mporanty ¢ es w' and w"', respectively. Equation (3.194)

R, (t) = fw aw [ aw |7 ar f_""m dt” p(¢)p(e”"ypr[w', w’ Jw'w”, (3.195)

‘\’Slere the integrals over w’ and w” span the entire domain of those variables.
: € may now reverse the order of integration and write

R, (1) = J‘fm dr fj)w dt” p(t')p(t”) fm dw’ L) aw” pr{w', w" Jw'w”

= f:o dv fi, dr” p(t')p(" )< w'w'>. (3.196)
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This step of reversing the order of a deterministic integration and an
expectation value will often be useful. Basically, such reversal is valid because
statistical averaging is itself just a definite integration with fixed limits.

Equation (3.194) is now
Rou(?) = f:) dr' fw dt’ p(t)p(t")Riglt — " + 1). (3.197)

Note that the absolute time ¢ no longer appears; the output of the filter
is stationary if the input is, which is a consequence of the assumption that

the filter is shift-invariant.
The change of variables ¢

Rou®= [ dt'”[ff; dr' pl)plt + r'")]Ri.,(r —) (3.198)

w — ¢ — ¢ now allows us to rewrite (3.197)

The integral over ¢ is recognized as the deterministic autocorrelation
p(t"") % p(""), not to be confused with a statistical autocorrelation (see
Sections 3.1.3 and B.4). The integral over is just a convolution, and we

have
Rou(t) = p(7) * p(t) * Rin(7)- (3.199)

Although (3.199) is a straightforward prescription for finding R,u(7)
when p(f) and R,,(t) are known, it is often easier to work in the frequency

domain. Equations (B.52) and (B.57) allow us to write
Sou¥) = |PO)*Sinlv), (3.200)

where S,,,(v) and S;,(v) are the one-dimensipnal Fourier transforms of R,y

and R,,, respectively.
This important result should be compar

system is equal to the transform of the input times the system transfer
function P. If we had an expression for a sample function of the input random
process, we could use (2.26) to find the corresponding output sample function,
but only rarely do we know the form of a specific sample function. More
often we must deal with gross statistical averages like S,(v) or Ry,(7),.in
which case (3.200) must be applied since we do not have enough informatiqh
to use (2.26). Note especially that (2.26) involves P(v) linearly, while (3.200)
involves its squared magnitude.

Although (3.200) gives us Sou(v) and an inverse Fourier transform then
gives R, (1), we can often be content with less information than this about
the output random process. Often a knowledge of the mean and variance

ed to its deterministic counter- .
part, (2.26), which says that the Fourier transform of the output of a linear :
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of the output is sufficient. An expression for the mean is easy to find since
Wou(t)) = {plt) * wi(t)) = p(e) * <win(8)), (3.201)

where the interchange of convolution isti
( and statistical averaging is valid b
the same kind of argument that led to (3.196). Equationgl(3.g201) c;n bZ

simplified further since (w;.(¢)> is ind d i i
of stationarity. Therefore wg have ependent of time by our assumption

PO * (Win(®)) = Cwio®)> [ p(e)dr
= {wy,(£)> P(0). (3.202)

The variance of w,,(r), denoted 62, is given by
5ut = <[wout(t)]2> - <wout(t)>2
= Rou((T = O) - <wout(t)>27 (3203)

wrhoere we have used the fact th.at the second moment of a stationary random
f cess is just the autocorrelation function evaluated at zero shift [see (3.45)]
n terms of the power spectral density, T

g

Roul® = [ S,u(v)dv. (3.204)
Combining (3.200)—(3.204) then gives
Oou = f_ww [POG)Sia(v)dv — [POKKw,,(6)>]% (3.205)

zogi (tlhtahtea knowledge of the mean and variance of the input is not sufficient
mean and variance of the output; the co i

: : ; mplete autocorrelation

fun(;‘t‘lot} or power spe(?tral density of the input is required in general

s él lrntportant special case of (3.205) arises when S,,(v) may be regarded

a4 (:ns ant over the range of frequencies for which |P(v)|? is appreciable
at case the noise is called white noise, meaning that it contains equai

amounts of all frequencies of interest, and S.
integral in (3.205). We then have , and §;,(v) may be removed from the

2

52w = Sul® [ [PO)dv — [POKw(0) T2 (3.206)

{ where 7 is some frequency within the passband of the filter.

An extension of this argument leads to a simple physical interpretation

L . :
: a: ttl]]:e pl;)wer. spectral density, which so far has been defined rather abstractly
: ourier transform of the autocorrelation function. Consider a filter

; ith a Very narrow idth
; passband of widt Av — P :
”}ransf r f tl Centel‘ed at v = vO s dnd let its

P(v) = rect[(v — vo)/Av]. (3.207)
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. . .
Since rect(x) = [rect(x)]* except for the two isolated points x = +14 (a set
of measure zero for the mathematically inclined), we may write

(W2 = 02y + (Wou)” = SialVo) AV. (3.208)

The quantity S;,(vo) is thus (Av)™* times the second moment of the output
signal from this narrowband filter. The reason for the name “power spejctral
density” can now be explained also. If w,,(f) is a voltage across a 1-Q resistor,

(w2 is the average power dissipated in the resistor and Si, is the density
mn . .,
of this power along the frequency axis, or average power per unit frequency.

3.5.2 Nonstationary Noise

The treatment of nonstationary noise begins in much the same way as
the treatment of stationary noise. We are given alinear, shift-invariant system
with impulse response p(¢). The input is the randorg process Wi, (1) and .the‘
output is the random process w, . (t). The nonstationary autocorrelation
function for the output is

Rout(t9t + T) = <woul(t)wout(t + T)>
x <f_°° dr' [ dt" plep(t" Wislt = ¥ ielt + T = r")>
(3.209)

Interchanging the order of integration and statistical averaging and writing
the result in terms of the input autocorrelation function produces

Roul(lat + T) = J‘OO ar J’inw ar’ p(t/)p(t”)Rin(t - t,’t + 71— t”)-
- ' (3.210a)
This equation can be rewritten in shorthand
Rt t + 7) = plt) * plt + ©) = Ry, 1 + 7). (3.210b)

This expression might seem to flout the rules introduced in Appepdix B for
the convolution shorthand. There we noted that an expression like f(t,) =
g(t,) would have no meaning if t, # t,, since we would not know what to

take for the output variable or “shift” in the convolution ir}tegral. Howey‘er,
the expression p(t,) * p(t2) * Rialts, t,) does not pose this problem since.

R, (ty,t,) is a function of two variables ty and t,. In tht? convolutlori w.lth
p(t,), t; is held constant and ¢, is the Shlft.. Conversely, in the convo u‘;lor}
with p(t,), t, is held constant. That we write ¢, = tand t, =t +7 iso 1?0t
consequence; t; and t, are still independent variables. Any confusion ic ad
might be engendered by the shorthand form of (3.210b)can always be resolve
by returning to the integral form of (3.210a).
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It is also worth noting that (3.210) reduces to its stationary counterpart
(3.197) if the input autocorrelation function is indeed stationary, for in that
case R,(t — t',t + 7 — t") in the integrand of (3.210) may be written

Ri[(t + 7~ 1)~ (¢ = )] = Ryt — " + 1), (3:211)

Since there are two independent time variables in (3.210), the only way
we could obtain a frequency-domain representation would be to use a double
Fourier transform with two independent frequency variables. Similarly, a
frequency-domain treatment of nonstationary two-dimensional spatial noise
would require a fourfold Fourier transform and a four-dimensional frequency
space. Fortunately, this degree of complexity is not necessary in radiographic
imaging. All the important results can be obtained from (3.210) directly
without ever visiting the frequency domain.

The fundamental simplification that occurs in radiographic imaging is
that the input noise can almost always be treated as uncorrelated (or, more
precisely, delta correlated). This term is the nonstationary counterpart of
the term white noise introduced in Section 3.5.1. If noise is white, the power
spectral density is nearly constant and its Fourier transform, the stationary
autocorrelation function, approximates a delta function. In the nonstationary
case, we cannot speak of a power spectral density, but the autocorrelation
function may still be sharply peaked with respect to the t variable and
therefore approximate J(t).

An important example of uncorrelated noise is the sequence of Poisson
impulses introduced in Section 3.3. We showed there that the autocorrela-
tion function for the random process z(t) defined in (3.116) is

R (t,t + 1) = a(t) 6(z) + a(Ha(t + 1), (3.212)
where [see (3.142) and (3.145)]

{z(t)) = aft). (3.213)

Now let us assume that z(t) is the input to our linear system. The output
correlation function is, from (3.210) and (3.212),

Roult,t+1)= ff’w dr f _°°w dt” p(tp(tYalt —t)d(t—t" +1)
+ [ dr [ p(p(eal—t)a(t+ 1)

= [ dr p)p( +va(t— )+ [p(0) * a@][plt + 1) * alt +1)].
(3.214)

* The first term is the convolution of the function p(t)p(t + 1) with a(t). One
:might be tempted to write [p(t)p(t + 7)] * a(t), but this form is subject
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to misinterpretation. A better shorthand would be f(t) * a(t), where
S =p®p(t + 7).
The time-dependent variance of the output signal is given by
62u(t) = {[Wou®)]?) — W)
= Rout(t7 t) - <wnut(t)>2’ (3215)

However,
{Woy(2)> = p(t) * al?). (3.216)

Therefore
o2t = [*_dt [p)Pale — ) = [p0T *al®.  G27)

This is by no means a general result. We have used the uncorrelated nature
and the Poisson statistics of the input z(¢) in arriving at (3.217). Nevertheless,
the result will prove broadly applicable when we treat noise in radiographic
images in Chapter 10.

As an example of the formalism developed in this section, let us return
to the idealized count-rate meter shown in Fig. 3.1. The detector and count-
rate meter may be regarded as a filter whose input is the Poisson random
process z(1) with a nonstationary rate a(t). The impulse response of the filter
is assumed to be

p(t) = Brect{(t — t/T], (3.218)
where t, is a fixed time delay necessary to insure causal behavior, T the
averaging time (T = 1 sec in Fig. 3.1), and 8 a constant with dimensions of

voltage.

To find the autocorrelation function of the output random process V(t),
note that
pOP(E +7) = {0

2 if (ty—3T)<t<(ta—T+3T)

3.219
otherwise, ( )

provided also that 7 is in the range 0 <7 < T (see Fig. 3.6).
The autocorrelation function of V(z) is then, by (3.214),

ta—t+ T2

Ryt +0)=p [0 ate — )t

of [ratTi2 N J‘td’rTﬂ o 1
+ﬂ (J:d-r/z a(t t)dt>( ta—T/2 a(t 2 +I)dt >

(3.220):

The last term in (3.220) is just (V(#)» V(¢ + 7)>. The interesting part of (3.220)
is the first term. If, as in Section 3.3.4, we define a zero-mean random process
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Fig. 3.6 Diagram to aid in the interpretation of (3.219).

AV(t) by
AV(t) = V() — V(@)), (3.221)

then we have [cf. (3.147)]
RAy(t,t + T) = ﬁl J:

This equation shows that, whatever the functional form of a(z), the random
process AV(r) becomes uncorrelated when t exceeds T since then the range
of 1ntegation is zero. The filter has a “memory” for a time T, but fluctuations
at two times separated by more than T are independent.

The variance of V(¢) is easily calculated from (3.217):

030 = [pOF * a) = p* [*"] " ate - ¢)ar
= BNV, (3.223)

ta—t+T/2
a—T/2

at —t)dt (O<t<T). (3222

: where the last step _follows from (3.216) and (3.218). Note that, because of the
constant f, the variance does not equal the mean. However, even if § were
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unity, V() would still not be a Poisson random process; only nonnegative
integer random variables can be Poisson, and V(¢) is a voltage.

Nevertheless, Poisson statistics are an important part of this problem.
The time-dependent signal-to-noise ratio is given by

SNR(f) = V(D) fay(t) = B2V
=p1? [B f,:dj:/; at — t’)dt']ll2

_ 1/2
_ ‘:J‘: tat+T/I2 a(tu)dtu] , (3224)

—tq—T/2

where the last step follows from the substitution ¢’ =t — t, with a reversal
of the limits of integration to cancel the minus sign in dt’ = —dt'’. The
constant § no longer appears in this result, and the integral has a simple
interpretation. It is the total naumber of counts collected over a time interval
of duration T centered about ¢ = ¢, where ¢ is the time at which the SNR
is measured. The parameter ¢, is just the delay inberent in the filter; we do
pot get an instantaneous measure of the count rate, but must wait a time
t,. However, as expected, the signal-to-noise ratio is simply the square root
of the mean number of counts detected in the averaging interval T. This
number is a Poisson random variable even if V(1) is not.

3.5.3 Optimum Filters

From the results of Sections 3.5.1 and 3.5.2, we now know how to calculate
the statistical properties of the output of a filter when the statistics of the
input and the PSF or MTF of the filter are known. We have not yet addressed
the problem of how to choose the “best” filter response. In general, there are
four components to this preblem (Davenport and Root, 1958): (1) the purpose
for which the system is intended; (2) the nature of the input to the filter;
(3) the definition of “best”; and (4) the freedom to be aliowed the filter de-
signer. A full treatment of this subject is beyond the scope of this book, but

we shall briefly consider three specific optimal filters-—the Wiener filter, the

matched filter, and the Wiener—Helstrom filter.

Wiener Filter

The Wiener filter is intended for the extraction of a signal from additive,
signal-independent noise. That is, the input to the filter is the random process:

y(t) = s(t) + n(t), (3.225)
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wh.ere s(t) is the signal of interest and n(t) is noise. In the Wiener formulation
(Wiener, 1933, 1949), both s(r) and n(t) are regarded as random processes
We are to fgrm an estimate §(t) of the signal on the basis of the data y(t).
Somewhat arbitrarily, we shall decide that §(¢) is to be obtained by passin :
-y(¢) through a linear shift-invariant filter and that the “best” estir};xgte lgl
be the one that minimizes the mean-squared error: "

8(t) = y(t) * p(v), (3.226)
<|8() — s(t)|*) = minimum, (3.227)

where p(t) is the impulse res
. : ponse of the filter. We further assum
signal and noise are uncorrelated, ume that the

{s(tn(t')> =0 forall tandt, (3.228)

and that we know the autocorrelation functions for both s(t) and n(z).
I.One qf tl.le most eleggnt solutions to this problem is based on the orthogo-
nality principle. Papoulis (1965) has shown that the p(t) that minimizes

<|8(t) — s(1)|*> is also the one that makes th. 8 « »
g es the error §(t) — s(t) “orthogonal

([8() — s()]y(t)> =0 forall tandr. (3.229)
Use of (3.226) and (3.228) in (3.229) yields
{Is() * p(0)] + [n(e) * p(®)] — s(0)} {s() + n()}>

= _)('i) {s(t)s(t')>plt — t")de”
+ f_m L <) p(e — ¢)dt” — (s()s(t)y = 0. (3.230)

h fthese expectation Valu 5
EaC O p €s 18 just an autOC()I]ClathIl fUIICtIOIl and we

f_ . R(t" = t)plt —t")dt" + f_ " R(t"=t)pt—1t")dt" =R (t—¢), (3.231)

where we have assumed that both i
. s(t) and n(z) are station
of variables T = ¢ — ' shows that ( ary. The change

f R = )ple — )dt" = f © Rt — 1 — 1)de

N =Rt —t)*p(t—1), (3.232)
and similarly for the integral involving R,(t" — t'). Therefore (3.231) can be

* Fourier-transformed to yield

S,(P() + S, (v)P(v) = Sy(v), (3.233)
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where S, and S, are the power spectral densities of s and n. The optimum
filter thus has a transfer function given by

S
PO) =55y SOV (3.234)

This result is intuitively appealing since it shows that P(v) should be

large for frequencies at which the signal power is much larger than the noise
power, and that P(v) should be small if the noise power is the larger.

Matched Filter

While the Wiener filter is optimal for a certain class of estimation prob-
lems, the matched filter is used in detection problems. In these problems, the
interest is not in accurately reconstructing an estimate of an unknown signal,
but rather in detecting the presence of a known signal (Klauder et al., 1960;
Turin, 1960).

The input to the filter is either signal plus noise or signal alone:

y(©) = s(t) + n(®) or y(t) = n(1), (3.235)

where now s(t) is a known function rather than a random variable.
The output of the filter is y'(¢), given by

yi(®) = y() * p(2). (3.236)

We use the notation y'(¢) rather than 8(r) since the output may not bear any .

resemblance at all to the input. Instead, we want the filter to give us a peak
or tecognition spike if the signal is present. Since we have the freedom to
specify the overall time delay of the filter, we can choose to have this peak
occur at an arbitrary time t;. A reasonable criterion to optimize the filter
is then to maximize the signal-to-noise ratio of the output at t = ty, i,

[SNR(t)]* = L)+ Pl imum, (3237)

(In(ey) * p)]®

where we are assuming that n{t) has zero mean. The denominator of (3.237)
is just the noise variance at the filter output. By (3.205) it is given (for station-
ary noise) by

{[n(t,) P(tl)]2> = 02, :
= R0 = [*, S.0|POI dv (3.238)
If the noise is white, S,(v) is constant over the bandwidth of the filter, and

02 =5, |7, [POIdv. (3.239)
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The numerator of (3.237) is

2

[s(ty) = p(t)]* = ’f:o exp(2mive,)S(MPv)dv| , (3.240)
where S(v), the Fourier t i
spectral domty er transform of s(¢), should not be confused with a power

. Itlls convegient to 2normalize the signal part of the SNR by the total

f)lfgg‘;aesgc;vgt::n [} == |;S_'(v)| zv, and to normalize the noise part by S,. Neither
alizations has any effect on the choice of ince b

he: : p(t) since both nor-

;Izl:gilzsl;}g Rfact.ors are mdepepdent of p(t); a filter that maximizes the normal-

will also maximize the unnormalized one. We thus require that

S.SNR(t;)|?
[ 1wl av
which, with (3.239) and (3.240), becomes

= maximum, (3.241)

’ [ explamive,)S()P(s)dv ’

T } = maximum. (3.242)

[f_mm |S(v)[? dv:| I:J‘_ww |[P(v)|? dv

We now appeal to the well-known Schwarz inequality (Klauder et al.

1960), which states that two arbitrary compl i ;
u(v) and v(v) must satisfy y complex functions (of a real variable)

2

Uf; uv)e() dv|

|7 o | [ 17, |

<L (3.243)

* The equality holds only if u(v) is pro i i
. t * i
proe y holds o (v) is proportional to [v(v)]*, which in the present

P(v) oc [S(v)]* exp(—2mivt,). (3.244)

- After an inverse transform, this condition is equivalent to

p(t) o« s(t, — o). (3.245)

:
In OtheI WOIdS p(t) 1S a Shlfted a]ld t €-reve ed Iephca Of
| 5 1me-ri TS the Slgnal we

Vy(t)"ihe time reversal ha§ th.e effect of converting the convolution integral
) p(t) into a correlation integral as defined in (B.53). If ¢, is zero, which
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is possible only in noncausal systems, we have
y(o) » ple) = [, y)pe — 1)t

= ff’ _y()s(e — 1) = y() x s(o). (3.246)

Matched filtering is thus equivalent to correlating the data with the signal
we are trying to detect.
Applications of matched filtering are discussed in Chapters 8 and 10.

Wiener-Helstrom Filter

An important variation on the Wiener filter was devised by Helstrom
(1967). He considered the problem of estimating a signal that has been
corrupted in two ways—by being convolved with a known filter function
(usually a blurring or low-pass filter) and by the addition of signal-
independent noise. The data to be filtered are of the form

y(t) = [s(6) * h(t)] + n(®), (3.247)

where h(?) and the autocorrelation functions of s(¢) and n(t) are presumed
known. An estimate §(¢) of the signal is to be formed by filtering y(z) with a
filter of impulse response p(t). Again we choose the minimum mean-squared
error as the optimality condition.

Helstrom showed that the optimum filter for this problem has a transfer
function given by

H*(v)

PO = THOP + (5,075,001

Several limits are of interest. First, note that if k() = 6(1), Hv) = 1, and
the original Wiener filter is recovered. Second, if the signal-to-noise ratio
is very good at all frequencies, such that [S.(v/S:(v)]* « |H(v)|?, then P(v)
reduces to an inverse filter, P(v) = [H(v)] ~*. Finally, if the SNR is very poor
and both signal and noise are white, then S,{v)/S,(v) is large and constant
and the Wiener—Helstrom filter becomes a matched filter P(v) o [HMI*.

(3.248)




