Source Considerations

in Radiographic Imaging

In Chapter 3, which emphasized attenuation mechanisms, a parallel x-ray
source was assumed. In this chapter we study the limits imposed by an x-ray
source of finite size.

POINT-SOURCE GEOMETRY

In radiography the sources approach point sources resulting from an electron
beam striking a metal target. The use of a point source, with its associated
diverging beam, results in “distorted” projection images compared to those of
the parallel beam studied in Chapter 3 [Christensen et al.,, 1978]. A typical
x-ray tube is shown in Fig. 4.1 [Ter-Pogossian, 1967]. The electron beam, accel-
erated to about 100 kv, is used to bombard a tungsten anode. Since the exposure
times are a small fraction of a second, the anode heating is minimized by using
a rotating anode and thus providing a larger dissipation surface, The electron
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FIG. 4.1 Rotating anode x-ray tube. (Courtesy of the Machlett Labora-
tories, Inc.)

beam strikes a tilted surface so that the projected focal spot, in the direction
of the beam, is smaller than the bombarded area.

We first consider the geometry formed by an ideal point source as shown
in Fig. 4.2. The output is formed by the line integral of the attenuation coef-
ficient u(x, y, z) of the various rays. In studying the geometric considerations
relating to image distortion and resolution, it is convenient to assume a mono-
energetic source. This represents no loss of generality since we can always return
to the general relationship as expressed in equation (3.4). Thus the detector
output due to a monoenergetic source is given by

1k, ) = I 7 ex0 | — [ ol 3, 2)dr | @n

where I,(x;, y,) is the intensity incident on the detector plane in the absence of
any attenuation and u,(x, y, z) is the linear attenuation coefficient at the mono-
chromatic energy &,.

This intensity I,(x,, y;) in the absence of any attenuating object can be
evaluated with the aid of Fig. 4.3. A point radiator emits N photons isotropically
during the exposure interval. The intensity at a point x,, y4 in the detector
plane is proportional to the number of photons per unit area at that point as
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FIG. 4.2 Point-source x-ray system.
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FIG. 4.3 Intensity falloff of an incident beam.

given by

NQ
I(x4, y5) = Km 4.2)
where NQ/4rx is the number of photons in Q, a is the incremental area, K is a
constant representing the energy per photon, and Q is the solid angle intercepted

by the area a given by

Q. 2%, “.3)
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It is often convenient to specify I(x,, y,) in terms of I, its value at the
origin, where 8 = 0, as given by
1 KN
° " Qnq?
This provides a representation that shows the variations in incident intensity
with detector coordinates. Thus 7; can be expressed as

“4.4)

L= 1080 = Iy ri Y 4.5

where r2 = x3 4 3.

This cos® @ dependence can be interpreted as the product of an inverse
square falloff with distance, providing a cos? 8 dependence, multiplied by a
cos @ dependence due to the obliquity between the rays and the detector plane.
Thus far the source has been assumed to be monoenergetic. For a polychro-
matic source the detector output becomes

Ly = [ 1(8) expl:—-— [ x5, 2, S)dr:lds. (4.6)

DEPTH-DEPENDENT MAGNIFICATION

Using equation (4.1), the simplified monoenergetic case, we can develop a more
useful formulation which directly illustrates the “distortion” due to point-
source geometry. The line integral element, dr, is decomposed as

dr = \/dx* ¥ dy* T dz*. @.7)

The line integration, as seen in Fig. 4.2, takes place along a line defined as

x=2X4; and y=%z 4.8)

2d
d

These equations allow us to rewrite the line integration of equation (4.1)
in terms of the depth z using

ar— eV ¥ (B 4 (@)

dx_ﬂ dy _ ya.
=4 and Z =4

Substituting, we obtain

Ixa 2 = Lexp[ —y/1 4+ & J' uo(G, 22,2)dz | 4.9)

The two-dimensional transmission function at any plane z is magnified by
d/z in the detector plane, as can be seen in Fig. 4.2. We can therefore rewrite
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the preceding equation as

I(xs, y) = I, exp [—4/ T:;—{ J: Ha (I;(JT)’ %, z)dz:] (4.10)

where M(z) = d/z. This formulation can be arrived at through physical and
geometric reasoning. The radical outside the integral is the obliquity factor due
to the longer path lengths of rays through the object at greater angles to the
normal. In certain geometries, as with relatively thin objects, it can be ignored.

EXAMPLES OF POINT-SOURCE GEOMETRY

As a first example, in Fig. 4.4 we study an infinite slab of thickness L which is
centered at a depth of z, and has a uniform attenuation of x,. The three-
dimensional attenuation coefficient can be expressed as

ﬂo(x’ Y, Z) =}, rect (i—zﬂ) . (411)

/

/ P /Id (xgq, Vd’

He

L)

d

FIG. 4.4 ITmaging of an infinite slab.

Since 4, is a function of z only, equation (4.10) simply involves the integral of
a rect function, giving

1xa ) = hexp (=1 + L) @.12)

For the case where (ri/d)u, L < 1, correspondmg to a combination of a
small attenuation coefficient, thin section, or regions close to the axis, the
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detected output can be approximated by
Ii(x4, yg) = Le~#e",

Another interesting example of the effects of point-source geometry is the
imaging of a rectangular object of unlimited extent in the x direction as shown
in Fig. 4.5. The attenuation coefficient in space is defined by

© uo(x, y,2) = p,rect (%) rect (Z_Tz") (4.13)
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FIG. 4.5 Imaging of a rectangular object.

yvhere K, is the uniform value of y, throughout the object. The resultant
intensity pattern at the detector becomes

I,(x,,, yd) = I, exp[ 1/ 1 -+- 22 J' M, rect yaz rcct( Zo)dz:I (4.14)

The product of the two rect functions is used to define the upper and lower

limits of integration corresponding to the overlap region of the two functions,
as shown in Fig. 4.6.
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= w=ema rect (y,z/dL)
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FIG. 4.6 Product of rect functions.
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Rect [(z — z,)/w] is shown centered at z, with a width w. Three cases are
shown for rect y,z/dL, corresponding to three ranges of y,. Since the function
is symmetrical in y, we can evaluate it for | y,|, with the same image appearing

* at each side of the y, axis. For values of | y,] > dL/(2z, — w), the rect functions
do not overlap, providing an upper and lower limit of integration of dL/2|y,|.
Thus the integrated value is zero, corresponding to the lack of attenuation in
the region where the rays miss the object. In the next region, for values of
{ys] below dL/(2z, — w) but above dL/(2z, + w), the integration takes place
in the shaded region from z, — w/2 to dL{2|y,}, corresponding to rays cutting
through the corners of the object. In the third region, where | y,| < dL/(2z, +
w), the rays always go through the entire object. This corresponds to an inte-
grated value of w since rect (z — z,)/w determines the limits of integration. The
resultant equation is given by

mln{‘:i:'/z

If(xy, y5) = I, exp (—— u,,\/ 1+ 512 f {:j[z dz). 4.15)
mind dL

Ya

Figure 4.7 illustrates the transmission I,/I, versus | y,|, ignoring the obliquity
factor /1 + ri/d2.
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FIG. 4.7 Transmission of a rectangular object.

For very thin sections the attenuation coefficient can be characterized as
#o(%, y, 2) = ©(x, y)8(z — zo) 4.16)

where 7(x, ) is the line integral of the attenuation coefficient at each point
x, y. The resulting detected output is given by

— 1
I(x4 ya) = I, exp [—«/1 + —;%T(XM-‘, %)] 4.17)

where M = dfz,. If we ignore the obliquity factor /T + r3/d%, we can rewrite
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the detected output as

MM
where the transmission function #(x, y) = exp [— 7(x, y)].

In this form the geometric magnification factor of the diverging beam is
evident where a plane at z, is magnified an amount d/z, in the detector plane.
Planes close to the source receive a large magnification, while those close to
the detector plane receive a magnification approaching unity.

The distortion of images due to point-source geometry can cause significant
problems in clinical interpretation if the diagnostician does not take it into
account [Christensen et al., 1978). For example, in Fig. 4.8 the apparent relative

Ifxs yo) = It (-x—‘ ﬁ) (4.18)
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FIG. 4.8 Distortion of the relative position of two images with respect to
the center lines.

radial position of two objects is distorted. Similarly, in Fig. 4.9, the apparent
size of a tilted object depends on its position within the diverging beam. These
examples are exaggerated compared to the usual clinical situation where the
angular divergence of the beam is relatively small.
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FIG. 4.9 Apparent size of a tilted object varies with its lateral position.

Figure 4.10 illustrates an x-ray photograph of an off-axis elongated plastic
hollow cylinder. Note how the variation in magnification with depth gives the
appearance of a truncated conical section, with one end experiencing greater
magnification than the other.
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FIG. 4.10k X-ré& photograph ofa holibﬁ plastié cylinder.k
EXTENDED SOURCES

We have shown how the use of a point x-ray source produces images having a
depth-dependent magnification which is a distortion when compared to the
parallel geometry of Fig. 3.1. We now consider the effects of a finite source.

The x-ray source using a bombarded target, as in Fig. 4.1, has finite dimen-
sions, which significantly affects the resolution of the detected image [Sprawls,
1977). We first assume that the source is planar and parallel to the detector
plane as shown in Fig. 4.11. If the object is an opaque plane at z having an
array of pinholes, each pinhole will reproduce an inverted image of the source
magnified by (d — z)/z, as indicated by the geometry. The point response
h(x,, y;) for a pinhole at the origin in plane z, for a source distribution s(x,,
¥.), is of the form

h(xs, ys) = KS(—xdz‘i—z, —y"d_i_z) 4.19)
= Xg Ja
= Ks(3,22) (4.20)

where K is a proportionality constant and m, the magnification of the source
due to a hole in plane 2z, is given by

m(z) = —“—:5 =1— M(). @21)
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FIG. 4.11 Planar extended source.

Thus the magnification of the source image is 1 minus the magnification of
the object. Since the response due to each pinhole is independent of its lateral
position, the system is space invariant, as discussed in Chapter 2. The response
to each isolated plane can be structured in convolution form and the spatial
frequency domain can conveniently be used. The response to a transparency
having transmission #(x, y) in plane z is given by

I(xs ya) = Kt (—;7", %’) ** S(—fﬁ, %’n!) (4.22)
This can be expressed in the Fourier domain as the product of the individual
transforms, where

I(u, v) = KM?*m*T(Mu, Mv)S(mu, mv) (4.23)

where T and S are the Fourier transforms of ¢ and s, and # and v are the spatial
frequency coordinates.

ANALYSIS OF IMAGING USING PLANAR SOURCES

Having explored a simplified view of the effects of extended sources, we now
formulate a more general analysis. Figure 4.12 illustrates an imaging system
using a planar source s(x,, y,). In our analysis, we first find the detected image
due to a differential point at x,, y, on the source distribution. We then find the
total detected intensity J(x,, ¥;) by integrating over the entire source. The dif-
ferential intensity at the detector plane in the absence of the object, dI,(x,, ¥J),
due to a point at x,, y, is again given by

dl(x4, o) = dl, cos’ 8
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FIG. 4.12 Imaging, using a planar source.

as in (4.5). dl, is now defined as the differential detected intensity on the axis
of the particular infinitesimal source point where x, = x, and y, = y,, as given
by
= S(xp y)dx,dy,.
nd (4.24)
The angular distribution cos® 8 is also measured from each infinitesimal source
point as given by

o= (v (15 s (2]

1
T+ Ry
where ry, = [(x;, — x,)* + (y; — »,)2]'/?, the lateral distance between source
and detector points.
Inserting the object with attenuation uy(x, y, z), the differential detected
intensity due to each infinitesimal source point is given by

dx,d
dlxg, Yo, X0 ) = 17:;%%—% exp [—J Lo(x, y, Z)ds:l

(4.25)

== dI, exp [— I Ho(x, », z)ds] (4.26)
where ds is the element of line integration. Expanding ds, we obtain

ds = /& T dyT | dt

ey

Again paramcterizing v and p coordinates in terms of z, the line integration
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takes place along

X, —
x =24

Xsr 4 x, and y = Ya — s B Ysy 4 Vs (4.28)
Substituting equations (4.27) and (4.28) into (4.26), we obtain

al(xs, ya, x,, y.) = di, exp[ \/1 [ j. l‘o( ~ Xt ox,

Ya — Vs .
7 + y,, z)dz:l (4.29)

Using the previously defined object magnification M = d/z and source magni-
fication m = —(d — z)/z, (4.29) becomes

I B B
dI(Xs, Yoy X,y p,) = dI, exp [4\/ 1+ ﬂo(——x" e e e, z)dz].

(4.30)

The detected image due to the entire source, (x4, y,), is obtained by integrating
the image due to a source point dI(x,, yi, X, y,) over the entire source as
given by

Ifx4 y5) = _”' Al (x4, Yar X5y, ¥2)

SO p) _ «/ ri, (xa — mx,
= IJ A rjdyr e"P[ Sl R
Yo = Mib, z)dz:| dx,dy,.  (4.31)

For the more complete polyenergetic case, both s and y are functions of energy
and the entire expression is integrated over the energy spectrum.

We can simplify equation (4.31) to provide more insight into the imaging
process. We first assume that ry, is sufficiently smaller than d so that we can
ignore the two obliquity factors relating to the falloff in source intensity and
the increased path through the object. We study a thin object at z = z, again
characterized by

ﬂo(x’ Vs Z) = T(x5 y)é(z - ZO)- (432)
The resultant detected image intensity becomes
1507 = s | [ oo ) oxp [ (B 28 20 la ay,
(4.33)

To place this expression in the desired space-invariant convolutional form, we
use the substitution

X, omx,, y, ~my, (4.34)
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to provide

1 X
I(x4 ya) = indinis (%, %) ** €XP [*T(ﬁ, %):l (4.35)

Using the previously defined ¢(x, ) = exp [—7(x, »)], we obtain the simplified
convolution expression
1 X, XxX; Y

Iixr 2 = gz s (26, 22) #x 1(32.32) (4.36)
which is identical to (4.22). This result was derived using a superposition of
source points each separately imaging the object. This provided a general
result, equation (4.31), for imaging any object. An alternative, simgler ?pproach,
however, can be used for the case of a planar object with the obliquity factors
ignored, giving the same result as in equation (4.36).

ALTERNATIVE ANALYSIS USING PLANAR OBJECTS

In this approach we find the detected intensity from the entire source due to
a transparency consisting of an impulse where #(x, y) = é(x — x', y — '), as
shown in Fig. 4.13. The resultant intensity at the detector plane or impulse
response h(x,, y4, X', ¥') is given by

- — Mx' — My’
Wxar yor ¥, ') = (T X, Yo 2 MY (437)

where 7 is the collection efficiency of the pinhole as given by
LY 4.38
n=z: (4.38)

s(xg, yg)

/

Id(xd' Vd)

o

FIG. 4.13 lmpulse response with an extended source,
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where Q is the solid collection angle of the pinhole. Equation (4.37) is derived
by direct geometric projection with a magnification m and a translation weighted
by M. The term n/m? is the collection efficiency divided by the ratio of image
and source areas. Ignoring obliquity is equivalent to assuming that the solid
angle of the unity area pinhole is 1/z2 over the entire transparency. With this
approximation, the detected intensity is given by

Kxp ) = [ [ Hxay yor X', M, ydx'dy’

_ 1 - x,,—Mx’y,,~My’) ' s
—4—,,zzmszt(x,y?S( e, S Jdx'dy'. (4.39)

Substituting x”” = Mx' and y"” = My’ provides a convolution relationship
given by
=1 (x b) (ﬁ &)
1 3 = gz (3 58) #» o8, 2 (4.40)

which is identical to the previously derived equation (4.36).

Effects of Source Size

Equation (4.40) illustrates the basic problem of the loss of resolution due
to source size. For object planes close to the detector where M =~ 1 and m = 0,
the image has unity magnification and is not blurred by the source, no matter
what its size, since (1/m?)s(x/m, y/m) approaches a delta function. For object
planes closer to the source, for example at z = d/2 where M = 2 and |m| = 1,
the object plane will be blurred by the source size itself. Attempts at greater
magnifications will have greater blurring since |m|= M — 1. Figure 4.14
illustrates two x-ray photographs of a high-resolution test object taken with
different magnifications. In the case of unity magnification the array of holes
are well resolved due to the lack of blur from the source function. With a mag-
nification of 2, however, the smaller holes are clearly blurred by the source
function.

SIMPLIFYING RELATIONSHIPS
USING SOLID OBJECTS

The simplified convolution relationships (4.36) and (4.40) were derived for a
planar object with the only approximations being the neglecting of obliquity
factors. However, for the solid object, even with the neglecting of obliquity,
the nonlinear relationship prevents us from forming a convolution relationship.
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:

FIG. 4.14 X-ray images of a planar object, using diffcrent magnifications.
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Repeating (4.31) without the obliquity factors, we have

1 _ —
I(x4, y4) = And® J.J. s(x,, y,) exp [*J ﬂo(%, %, z)dz]dx,dy,.
(4.41)

In general the three-dimensional attenuation coefficient of the object u(x, y, z)
must be used to solve for the intensity. Unfortunately, this relationship does
not provide the insightful convolution relationship which serves to directly
indicate the system performance and facilitate the use of frequency analysis.

Using various approximations, each having different degrees of validity,
equation (4.41) can be linearized to provide a convolution form. One approach
is the modeling of the solid object as an array of planar objects as given by

HolX, 3, 2) = 3 Tx, )0z — 2,) (442
with the resultant detected intensity

1 —m, —_
1(xq4, y3) = Ind® J‘I s(x,, y,) exp {—Z[Ti<xd Mm,x,, s Mm,y,)]} dx.dy,
i ¢

(4.43)

where m;, = —(d — z,)/z, and M, = d/z,. If we make the assumption | udz < I,
namely that the attenuation through any path is relatively small, we can lin-
earize the exponential where exp (— [ udz) = 1 — [ udz, giving

I(xy y) = I, — 'Z #zmlﬂ(%j’ L-i) *% TI(%J; }};1—1) (4.44)
where I, = (1/4nd?) [ [ s(x,, y,)dx,dy,, the intensity in the absence of an object.
This formulation (4.44) provides a convolution relationship for all planes
of a solid object. Unfortunately, the approximation used in the derivation,
[ mdz < 1, is quite inaccurate except for very thin portions of the body. At
diagnostic energy levels the attenuation coefficient of most soft tissue is about
0.2cm™'. Thus a typical 20-cm depth provides [ udz = 4, which makes the
approximation unreasonable.
An alternative approach is to assume that most body tissue has an attenua-
tion coefficient similar to that of water, so that the attenuation coefficient is
decomposed as

ﬂo(x’ Vs Z) - ﬂw(x9 Vs Z) + /IA()C, s Z) (445)

where u, is the attenuation coefficient of water and u, is the departure from
that of water. We can now more legitimately assume that [ p,dz < 1. Those
cocefficients that do depart significantly from water, namely air and bone, are
often associated with relatively short path lengths, so that the assumption can
remain valid. Substituting (4.45) in (4.41) and using the assumption above,
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we obtain

ke v~ i | [ sty exp | - [ (T, 2o Y
% [1 —~ I (B, Ya z)dz]dx,dy,. (4.46)

The first exponential in the integral represents the line integral of the object
consisting of uniform tissue having attenuation coefficient yu,. Because of the
uniformity we can make the approximation
Xg — mMX, yg — my, ~ Xa Ya ).
(R YT e 1) = 1 (34,24, 2) (4.47)
This approximation is valid within the interior of the object. It fails, however,
at the boundaries of the object, where the attenuation coefficient goes abruptly
from z, to zero. Using this approximation, and restructuring the integration
involving x, as a summation of planes, as in (4.42) to (4.44), we obtain
~ 1 X, X ¥
I(xq4, ya) = Tw[lz - ; mﬁ(i, &) *k TAl<ﬁdi’ ﬁd:)] (4.48)

m; m;

T, = exp |:~J‘ ,uw<;; K;, z)dz}

Equation (4.48) provides a convolution relationship with each plane using more
valid approximations than that of (4.44). T,, represents the transmission through
the object as if it were composed uniformly of water and the source was a point.
It should be emphasized that, although equation (4.48) provides a reasonable
basis for calculating the intensity due to a solid object, that is not the main
reason for its presentation. The principal conclusion to be drawn from this
development is that it is reasonable to study the response to an individual plane
within a volume using the simplified convolutional relationship of equation
(4.36).

Although (4.44) and (4.48) provide the elegance of the convolution rela-
tionship, for the general three-dimensional object, (4.31) or (4.41) must be
used. For example, using the rectangular object of Fig. 4.5 with equation (4.41),
we obtain

Ii(xy, y0) = 47:7 JJ 5(x,, ¥5) exp [*ﬂa j rect (}’d ;Hj“yx) rect (z - z°>dz]

X dxdy;. (4.49)
In this case the limits of integration are no longer symmetrical in y,. The
integral over the object is given by o
dL/2-yid
“

j rect (%) rect (z;wfﬂ)dz == f e M dz. (4.50)

2o
min
ma

where

Nonparallel Source Distributions 53

These limits define five zones of integration corresponding to the regions
delineated by the intersection of the rays from the finite source with the four
corners of the rectangle.

In general, in the study of radiographic imaging, the simplified convolu-
tional relationships of a single plane are preferred since they provide profound
insight into the performance-limiting factors. To review the development of the
convolutional approach, we first showed that, for a planar object, if the rela-
tively small obliquity factors are neglected, the resultant image is the convolution
of the magnified transparency with a magnified source. For the solid object,
we first modeled it as an array of planes and showed that the convolutional
form would again apply if the total line integral of the attenuation coefficient
is quite small so that the exponential could be linearized. Since this is not the
usual case, we then modeled the solid object as a sum of a water coefficient,
its dominant component, and a difference from this coefficient. Since the line
integral of the difference component is quite small, we could linearize this
portion of the expression and express each plane in convolutional form. As
indicated, the motivation for this exercise was not primarily to establish an
analytic procedure to deal with solid objects. It was, rather, a justification for
analyzing systems by their response to a single planar object. We have shown
that the simplified planar object analysis does indeed predict the performance
of complex volumetric objects.

NONPARALLEL SOURCE DISTRIBUTIONS

In most x-ray tubes, as shown in Fig. 4.1, the source is not parallel to the
plane of the detector. This results in a different point-spread function for each
region of the detector plane. In general the source is a three-dimensional surface
8(x,, ¥y 2,). Using the same type of derivation as that of the planar source,
the generalized expression for the recorded intensity becomes

1000 = g | | f s(x"rJ;"Z))T/zexp[ S (=)

x _[ ,uo(x" ;4{” %, Ye ’A z)dzj|dx:dysdz, (4.51)

where

m,:*dAz and M,:d-z,.
z—z, z—z

5

As shown with the rotating anode tube of Fig. 4.1, the conventional x-ray tube
has a source that can be approximated as a planar surface which is tilted with
respect to the detector. The effects of this source distribution are illustrated in



Fig. 4.15. As can be seen, the projected source size varies significantly for dif-
ferent y positions on the planar object ¢(x, ). The source geometry is modeled
by sctting z,  ay,, where o is the tangent of the angle between the source
plane and the vertical.
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FIG. 4.15 Point response variations due to a tilted source.

For the tilted source case we can again evaluate the impulse response
using a pinhole at x’, y" as in Fig. 4.13. Since, in general, the magnifications
will be different along each axis, we can rewrite equation (4.37) as

hry Yo ', y7) = L s(B = M Yo = Moy (4.52)
xty b4

x

where m,, m,, M,, and M, are the incremental magnifications as given by

_ Ox, 7
e = G and m, = . ws3)
9% g oy, — e .
o ox 7o ady

In the case of the planar source parallel to the detector, these magnifications
were constants independent of source and object coordinates. For the tilted
source these constants are evaluated with the aid of Fig. 4.16. The values of
m’ and M’ for the tilted source, by geometry, become

, d—z

m=_—9"%Z and M2 %

.5
z— oy, z— oy, (.54

Mx' +m'xs, M'y' + m'y,
Xsr Vs ~e—| "ty
f z
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FIG. 4.16 Ray tracing for a tilted source.

The incremental magnifications are found by appropriately differentiating the
recorder coordinates in Fig. 4.16, where x, = M'x’ + m'x, and y, = M'y’ +
m’y,. These are given by

. d—z _ d— 2 —ay)
mx*m'—— ziayl, my* (Z_a.})-\')2 ’
and M, = M,—=%—"%: (4.55)
z— “y.r

For any sources of interest the source size will be significantly smaller than
the object depth z. Thus z > ay, and d>> ap,. We then get the approximate
relationships

mx:__d~z:m’ m,:—(d‘z)(iﬁay):m(lﬁa)’)’
z z z
d

and M,=M,=~ e M. (4.56)

Using these relationships the point response, ignoring obliquity, is given by
R 1 X, — Mx" y,— My’ ]

W o X V) = Gt — i e e | @5D)
This impulse response confirms the behavior shown in Fig. 4.15, where the
y magnification changes significantly with the vertical position of the object
point y’. The x magnification remains essentially unchanged. For the case of
an impulse at y’ = z/a, the detector sees the edge of the source, resulting in a
line image. Equation (4.57) then reduces to a delta function in the y dimension.

For the intensity due to a general transparency #(x, y), we use the impulse

response in the superposition integral. Making the substitutions x”* = Mx’ and
y'' = My', the detected intensity becomes

.

_ 1 1 x5 — x"’ Vi— Y )
L(xa ya) 4nd*m? J.j 1 — acy"/Mzs( m “m(l —ay’/Mz)
-

X YN g
x ’(M’ M)dx dy”.  (4.58)
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Despite the appropriate substitutions, equation (4.58) remains space
variant because of the variation in the y magnification with the object coordi-
nate. In an attempt to use the convolution formulation, we can divide the
object plane into narrow horizontal strips at each value of y". These strips form
space-invariant or isoplanatic patches within which the impulse response is
constant. Each horizontal strip at an object coordinate y’ corresponds to a
horizontal strip at the detector plane at coordinate y; = My'. An approximate
convolutional relationship can be structured at each horizontal strip by refor-
mulating equation (4.58) as
Loy 0= sz e Zm) Gl 3f) 4
where ¥ is the detector coordinate of the region of interest and is a constant
in the convolution operation. The variation of vertical resolution with Vi is
clearly indicated. This relationship can be transformed into the frequency
domain as

L, v, yi) = Z’%s[mu, m(l — %)v] T(Mu, Mv). (4.60)

Again at y' = z/a corresponding to y; = d/&, we see the infinite bandwidth in
the v dimension.

We have shown that the commonly used rotating anode tube can be
structured as a tilted planar source. Although all the magnifications become a
function of object position, the only one that changes significantly is the source
magnification in the direction of the tilt. Using formulations for the incremental
magnifications, with appropriate approximations, we develop an impulse res-
ponse which is a function of the object position in the direction of the tilt. This
allows an approximate convolution relationship which serves to illustrate the
nature of the blur function.

EFFECTS OF OBJECT MOTION

The oversimplified solution to the problem of a finite source size is to use an
extremely small source. These sources, however, have reduced power output,
requiring longer exposure intervals, resulting in blurring due to the motion of
the object under study. These motions are either those of uncooperative patients,
such as children, or the physiological body motions of the respiratory, cardio-
vascular, and gastrointestinal systems.

The blurring effect of motion can be considered as a linear system parameter
similar to that of the source size. Using the basic system of Fig. 4.13, consider
the pinholc aperture moving uniformly in the x direction with a velocity v
during the exposurc interval 7. The image movement at the recorder planc, by
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geometry, is MvT. The resultant recorded intensity is given by

1 X,
L(xg v2) = _,(J &) (ﬁ Ya 1 X
L5070 = grgina'\ar M) ™ \m m *MuTreCt(M—JT)' .61

Thus the motion blurring is minimized by a short exposure time T.

Equration (4.61) can be restructured to emphasize the trade-off between
source size and exposure time as limiting the system resolution. The energy
density of the source s(x, y) can be written as the product of a power density
p(x, y) and the exposure time 7. The total source energy E, is thus given by
TIfp(x, y).dxdy. To minimize the exposure time, for a given source energy
the source is operated at its maximum power density Py,,, usually determineci
by the temperature limit. If we assume that the source is emitting uniforml
and has an extent of a(x, y), equation (4.61) becomes ¢

Pmlx
a7 — "M M) oy p g%, 2E) _”Aj#@
m m VL,
) t[dem.x [{ atx, yyaxdy
C
re VioE, (4.62)

where q(x, y) is a binary function defining the extent of the uniform source.
The T in the rect function due to motion has been replaced by the source
energy divided by the integrated source power. For a square source where
a(x, y) = rect x/L rect y/L, the impulse response is given by

hx, v) =K t(ﬁ 14_) X
(X4 Ya) rect (4, = %) * rect —__MvE,/;’m,,Lz . (4.63)

As mdicate.d in (4.63), a larger source size results in a decreased motion blur-
ring, and vice versa. The total extent of the point response in the x direction
X, due to source size and motion, is given by ’

MvE,

X=|mlL+ gk (4.64)
This expression can be minimized with respect to L, giving
L. — (ME_ v
e = (prrrer) (4.65)

A square source size having this dimension will provide the smallest point
response in the x direction. The corresponding exposure time T is given by

__E [ E N\ m]\¥?
T Pm.xL;iﬁ(Pm.x) (z20) (4.66)

Thus, as the velocity of the object increases, the optimum source size becomes
larger and the cxposure time correspondingly smaller.




REPRESENTATIVE SOURCE CONFIGURATIONS

Standard x-ray tubes use directly heated cathodes consisting of a coiled filament
within a focusing cup. The resultant electron optics often results in two distinct
areas on the rotating anode which are being bombarded with electrons and
producing x-rays, as illustrated in Fig. 4.17. The source function can be approxi-
mated as two narrow rectangles each w X L separated by W, as given by

s(x,y) = [rect (x—in—/2> - rect (x_er_W/Z):l rect (%) (4.67)
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FIG. 4.17 Typical focal spot shape in x-ray tubes.

Typical dimensions for W and L vary from 0.3 to 2.5 mm. This represents a
relatively poor response in the x direction, which can distort vertical edges.
One indication of the problem is the Fourier transform of the source distribu-
tion, as given by

S(u, v) = 2wL cos (zWu) sinc (wu) sinc (Lv). (4.68)

The cosine function makes the response highly oscillatory in the x direction.
Of course, as previously indicated, the system response to a source function is
determined by the source magnification 7. Thus object planes close to the detec-
tor, where m is relatively small, will be relatively independent of the source
size and shape.

Many efforts are under way to provide source configurations which are
both smaller and have preferred shapes. In some x-ray tubes additional focusing
fields are applied to causc the electron beam to produce a more desirable single
spot. Microfocus tubes arc available which use electron guns and produce
focal spots of 50 to 200 microns. Ficld emission tubes have no heated ﬁlamcm
and emit electrons from sharp points on a cylindrical cathode where the clectric
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field is very high. These electrons impinge on a conical anode within the cylinder,
resulting in a relatively large annular source size. These tubes use relatively
high voltages and low currents and have not achieved widespread use.

Focal spots are generally measured using a pinhole camera. A small hole
is placed in a relatively opaque sheet of high-atomic-number metal such as
lead or gold. The pinhole is placed between the source and the film recorder.
Ignoring obliquity factors, the resultant source image is given by

1650 1) = gm0 2) ++ (34 24) (4.69)
where p(x, y) represents the pinhole. The detected image will essentially repre-
sent the source as long as the magnified pinhole p(x/M, y/M) is appreciably
smaller in extent than the magnified source image s(x/m, y/m). In this way the
pinhole acts as a two-dimensional delta function, reproducing the source image.
Typically, the pinhole is midway between source and detector with |m| =1
and M == 2, so that the source image is approximately actual size. A relatively
high resolution recorder, consisting of film only, is used to preserve the source
image.

PROBLEMS

4.1 (a) Using a point-source x-ray system a distance d from the detector, find
an approximate expression for the distance from the center of the detector
r; where the incident intensity has fallen off a fractional amount A, where
AL

(b) Using the same system, a slab of material of thickness W and attenua-
tion coefficient u,, parallel to the detector, is placed in the x-ray path.
Neglecting the falloff in incident intensity, calculate the value of r; at which
the detected intensity has fallen off a fractional amount A, where A < 1.

(¢) For parts (a) and (b), calculate r; for d = 1 meter, W = 20cm, u, =
025cm™', and A = 19.

4.2 As shown in Fig. P4.2, a cylindrical bone of infinite length is embedded in
a layer of soft tissue of infinite extent. The linear attenuation coefficient
of the bone is g, and that of the soft tissue is x,. The incident intensity
is I, using parallel x-rays.

(a) Find an expression for /,;, the detected intensity.

(b) What is the ratio of the detected intensity through the maximum bone
thickness at y, 0 to that of the soft-tissue-only region where y; > R?
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(c) Calculate this ratio for W= 20 ¢cm, R = 0.5 cm, using the curves of
Fig. 3.7, where the soft tissue is muscle having a density of 1.0 and the bone
density is 1.75. Perform the calculation for x-ray photon energies of 30
and 100 kev.

4.3 A cylindrical object having an attenuation coefficient g, is positioned in a
point-source X-ray system as shown in Fig. P4.3.

R | T

Xd

SOURCE

FIG. P4.3

(a) Find an expression for I, neglecting the falloff of the source intensity
over the detector plane due to obliquity.

(b) Find an expression for I, using the object in Problem 4.2 with the
cylinder in a layer of soft tissue.

4.4 A cylinder of attenuation coefficient g, radius R, and length L is placed
on the axis of an x-ray imaging system as shown in Fig. P4.4. Neglccting
all obliguity factors, find an expression for 1, versus r,, where the intensity
in the absence of the object is a uniform /,.
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4.5 A rectangular x-ray source, s(x,, y,) = rect (x/X) rect (y/Y), is used with
two opaque, semi-infinite planes as shown in Fig. P4.5. Ignoring all obliquity

fac}ors, plot the intensity versus y, on the detector plane labeling all break
points.
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4.6 An L x L x-ray source, having unity intensity, parallel to and a distance
d from the recorder, is used to image a planar transparency a distance z
from the source having a transmission

t =% 4 4 cos 2may

(a) Ignoring obliquity, find an expression for the intensity at the recorder
plane. (Do not leave in convolutional form.)

(b) Repeat part (a) where the source is tilted at angle tan™! &, where & =

z,/y., and the projected size of the source in the xy plane continues to be
L x L.
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47 A tilted source is used to image an opaque planar tilted object infinite in
extent and containing three pinholes of equal size as shown in Fig. P4.7.
Neglecting obliquity, plot I, versus yu, indicating the relative amplitud;s
and the position of the break points. Space invariance can be assumed in
the vicinity of the pinhole images.

© FIG. P4.7

4.8 A rectangular source tilted by an angle 8 is used to image an opaque 9bjc?ct
tilted at 45° as shown in Fig. P4.8. The projection of the source Y is sig-
nificantly smaller than all other dimensions. Neglecting obliquity fact.ors,
plot the relative detected intensity in the y, direction labeling the. ya axis at
the break points. [Hint: Assume space invariance in the vicinity of the
break points.]
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FIG. P4.8

4.9 A source tilted at an angle of 45° has a projected intens?ty s(x, ¥) =.K
circ (r/ro). It is used to image a transparency at z = 2, having a transmis-
sion 1(x, y) = 3 8(x)8(y — i). Find the resultant intensity at z — d, neg-

i

lecting obliquity.

Recorder Resolution

Considerations

We have thus far considered resolution limitations due to the x-ray source. The
other important resolution-limiting factor in the system is the x-ray recorder,
where the image itself is formed. The principal difficulty is in the attaining of
the desired high resolution while maintaining a relatively high quantum or
capture efficiency. The quantum or capture efficiency «epresents the fraction of
photons that interact within the recorder material. As will be shown in Chapter
6, the number of captured photons per picture element governs the resultant
signal-to-noise ratio. This SNR will be shown to be given by

SNR = C/nN ER))

where N is the number of photons per picture element impinging on the recorder,
n is the quantum or capture efficiency, and C is the contrast of the structure
of interest. A thick recorder has a high quantum efficiency but, as will be shown,
cxhibits poor 1esolution. Similarly, very thin recorders exhibit negligible blur-
ring due to spreading, but capture relatively few of the photons.



