Tomography

In this chapter we consider systems that provide impprtant “tpmographlc” or
three-dimensional capability. The tomogram is eﬂ'ect.lvc.:ly an image of a slice
taken through a three-dimensional volume. Idea.lly, it is free 9f the eﬁ'?gts of
intervening structures, thus providing a distinct improvement in the ability to
isualize structures of interest. -
Vlsuail;zZirxtgle-projection radiography the resultant il.nage is the superposition
of all the planes normal to the direction of propagatlop. In essence the syste:m
has infinite depth of focus, although, as was shown in Chapter 4, the ﬁ'mte
source size causes planes closer to the recorder to have t'>etter .resc?lutlon.
Ignoring this effect and assuming parallel rays, the recorded image is given by

1(x, y) = Iy oxp [~ [ p(x, y, 2)de]. (7.1)

This integration over z often prevents a suitable diagnosis of the cl}aracteristics
of a section at a given depth plane. Since all other planes are supenmposed,‘ th.e
subtle contrast variations of the desired plane are of?en obscufed. This is
particularly true in studies of lung lesions where the superimposed rib structures
obscure the visualization.

MOTION TOMOGRAPHY

Until very recently the only method of isolating a view of a single plane was
motion tomography [Meredith and Massey, 1977], as shown in Fig. 7.1. The
source and the recorder are moved in opposite directions. As shown, one plane
in the object remains in focus while all others have their images blurred. The
nature and degree of the deblurring is determined by the distance of each plane
from the focused plane and by the extent and type of motion of the source
and film. These systems are often classified by the type of motion undertaken,
such as linear, circular, and hypercycloidal tomography. The mechanisms that
accomplish these motions are quite elaborate since they must be both accurate

and rapid, so that the motions can be completed in a few-second breath-holding
interval.
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FIG. 7.1 Motion tomography.

In general, the source undergoes a specific motion in a plane parallel to
the recorder plane. The path as a function of time can be characterized as
g&(x, y, ©). The path, in general, is a two-dimensional delta line function which
defines the motion of the source. From this motion and the corresponding
motion of the film, we can calculate the resultant impulse response.

Using the source motion of g(x, y, 1), we immediately see that the resultant
path on a stationary film using a pinhole transparency is g(x/m, y/m,t) by straight-
forward geometry. Thus the path due to source motion experiences the same
magnification, m = —(d — z)/z, as did the source image in Chapter 4. As indi-
cated, to provide a tomographic plane, the film is moved in a scaled version
of the source motion. Whenever the source is displaced from the axis at a point
(x, y), the film center is positioned at — kx, — ky, where k is a positive num-
ber representing the scaling of the film motion. Thus the center of the film
traverses a path g(x/—k, y/—k, 1).

As the film moves, the resultant path of a beam on the film moves in the
opposite direction with respect to film coordinates. Thus the resultant path
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incident on the film due to the two motions is the impulse response, which
is given by

hxa yat) = Bg(p 3 15 ) a2

where (k + m) is the total magnification due to both motions and B is. a nor-
malizing constant that will be subsequently evaluated. The integrated impulse

response is therefore v
X X,
— X Ya 73
=5 (3 i) a3
where f(x, y) is the integrated path traversed by the source as given by
£x, ) = [ 80x, 3, )d(or) (7.4)

where v is the source velocity in the direction of motion. The resultant recorded
path, as given above, is
f( Xa | Ja )
k+mk+m

This impulse response, because of the geometry, is independent of the
lateral coordinates of the object and can thus be placed in convolutional form
for each depth plane z. The resultant image due to a transparency ¢ at plane
z is given by

I(xa, i) = t»+ h

=13 3) = ¥ (3 ) (7.3)

In evaluating the normalizing constant B, we use similar reasoning to
that employed in Chapter 4. We assume that the total number of photons used
during the exposure is N. If the source is translated uniformly, the numt?er of
photons emitted per unit distance during the exposure is N/L, where L is the
line integral of the path f(x, y) as given by

L = [{ fGx. y)dixdy. (16)

Although this is a two-dimensional integration, it represents a line i.ntegral
since f(x, y) is a delta line function. Thus the constant B, representing the
intensity per unit distance at the detector plane, is given by

— KN 39—t 77
B = tamaie 7wy ' 0 = e 1 iy .7
where I, is the incident intensity as defined in (4.2), (4.4?, and (4.5), and X is
proportional to the energy per photon. Ignoring obliquity factors we can set
I, = I, the intensity at the axis, which assumes that cos? § =~ 1. The resultant
detected intensity becomes
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The most widely used form of motion tomography is linear tomography,
where the source and film are both moved uniformly in straight lines in opposite
directions. The source motion is described by

&(x, y, 1) = 8(x — vt)d(y) rect (”7’) (1.9)

where v is the velocity of the source in the x direction and X is the extent of the
traverse. The resultant source path is given by ‘

(7.8)

765.3) = | 62,3, 0don) = rect () 80) (7.10)

indicating a line of length X in the x direction. The resultant detected image
from (7.8) becomes

Xd Io X,
L%, y5) = z(-ﬁ{?‘) - R T [X(—km]a(y‘,). (7.11)

The d(y,) in the expression above could be eliminated by defining the convolu-
tion as being one-dimensional in the x direction only. Thus each point at plane
z is smeared into a horizontal line of length X(k + m). At the desired plane
zy we have

d—z,
o (7.12)
where the rect function becomes a narrow delta function and reproduces the
transparency in its original form. The plane of interest is at the depth z, =
d/(k + 1). A chest tomogram using linear motion is shown in Fig. 7.2. Note
the defocusing of the ribs and spine.

In the frequency domain the Fourier transform of 7 is multiplied by the

Fourier transform of the point-spread function 4. For the case shown above,
we have

k=—m=

I(u, v) = I,M*T(Mu, Mv) sinc [X(k + m)u). (7.13)

Thus, in the u direction, a plane at z is multiplied by a low-pass filter having
an effective bandwidth of approximately [X(k + m)]~!. At the desired plane
Zz = z,, this becomes an infinite-bandwidth filter and does not affect the fre-
quency response /,(u, v). All other planes experience various degrees of filtering.
When using a finite source rather than a point source, the total impulse

response is the convolution of the motion path function and source size as
given by

=L (%% 1 Xs Ve .
"0 = gt (o ) m ! (3w e i) 09

Thus at the tomographic plane z = z, where m = —k and S becomes a delta
function, the resolution continues to be limited by the source size. The expres-
sion in (7.14) reduces to that of the point source as given by (7.5) and (7.7) if
we substitute s(x, y) = KN&(x, y).
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FIG. 7.2 Chest tomograph, using linear motion of source of detector.

Circular Motion

As was indicated, many other motions can be used other than the linear
motion described. The linear motion has the disadvantage that planes other
than the desired tomographic plane experience blurring in one dimension only.
Thus edges parallel to the x axis receive no blurring at all. Structures of this
type in any plane will remain sharply defined and can interfere with the visua-
lization of structures in the desired plane. The alternative is the use of two-
dimensional motions such as circles, hypercycloids, and so on. A circular motion
can be described using the polar coordinate equivalent of the delta function
where

8(x — x0,y — yo) = XL —T1)5(g — p,) (1.15)
The circular motion is described by

g(x,y,1) = g(r, 0, ) = éﬁf-;__“;?a(o — of) rect (g’_;) (1.16)
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representing a single circular traverse. The resultant source path is described as

f(x,y) = j &T—rl) (0 — wt) rect (%i—)rd(a)t)

— &(r — ro) rect (%z) — &(r — ro). .17

The film center also moves in a circle at the opposite side of the axis having
a radius kro. When the source is at 7, 8, the film center is at kr, 8, + 7. The
resultant impulse response from (7.3) and (7.7) is given by

h(Xa, y3) = h(r) = may — (k + m)rl. (7.18)

Motion tomography has two basic disadvantages. First, for each tomo-
graphic plane, the entire volume of interest is exposed by x-rays. If a number
of sections are desired, as is usually the case, the radiation can be extensive.
Second, in motion tomography, the detail contrast in the plane of interest is
not improved over a conventional radiograph. All planes other than the plane
of interest are blurred or smeared out, leaving the desired plane as the only
one with any detailed structure. Thus the sharp details of the interfering struc-
tures in other planes are removed, which significantly improves the visualization
even though the detail contrast in the desired plane is unchanged.

Multiple-Radiograph Tomography,; Tomosynthesis

The second of the disadvantages, the detail contrast being the same as that
of conventional radiography, is fundamental to motion tomography. The first
of the disadvantages, however, can be remedied by a system shown in Fig.
7.3 known as tomosynthesis [Grant, 1972], where the desired plane is selected
after the x-ray procedure. Here a sequence of different radiographs are taken
with the source in different positions and the subject and film in the same posi-
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FIG. 7.3 Sequence of radiographs used to create a tomogram.
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tion. The resultant films are stacked together and translated with respect to
each other to select the desired plane. Assuming that the resultant composite
image is the sum of the individual detected images, the path function f(x, y) is
a sum of point-source positions given by

feN=60) ¥ 6 —ix) (7.19)

where n is the number of source positions and X is the separation between
source positions. The value of k, representing the translation of the individual
radiographs, is determined after the x-ray exposures are made, where each
transparency is separated from its neighbor by kX. The resultant effective
detected intensity for a given plane t(x, y) using (7.8) is given by

Ly = 1(3228) wx 80 3 Olxs — ik + m)X]. (120)

The line integral L becomes n, the sum of the source positions, and the (k + m)?
normalization in the denominator is canceled by the factors in the delta func-
tions. It is clear that k is readily chosen to select the desired plane of interest.
Since each film is given approximately 1/n of the exposure normally required,
the system requires no increase in radiation dose for the ability to select planes
after the exposure. The system requires a relatively rapid film changer so that
the n exposures can be accomplished in a breath-holding interval of a few
seconds. The out-of-focus planes are smeared by a series of points that approach
a line. Using an appropriate mechanical structure the separation of the radio-
graphs can be continuously varied with the plane of focus continuously moving
through the object. Alternatively, the information can be collected and stored
electronically, using television fluoroscopy, with the translation and sum-
mation taking place in a computer.

CODED SOURCE TOMOGRAPHY

Another approach to tomography is the use of a relatively large complex source
s(x, ¥). The recorded image, as studied in Chapter 4, is given by

x, Y x,2).

S<m m)** t(M M)

This recording can be considered the encoded image I,. This encoded image is
not useful of itself because of the complex source function.

The desired image, at any plane of interest, is decoded by cross correlation
with s(x/m,, y/m,), the source function at a particular plane z, where m, =

e S o R g
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—(d — z,)/z,. The decoded image is given by

I =1, » s(i,L)
m, m,

= s(X, x,2 x 2.
= l:.s'<ml -mll) i s(m m)] ** t(M ,XJ{) (7.21)
The source function s(x, y) is chosen to have a sharp autocorrelation peak,
approaching a two-dimensional delta function. Thus at z = z,, I, will faithfully
reproduce the plane t(x/M,, y/M,) where M, = dJz,. For z # z,, the cross-
correlation function will become broad, thus blurring all other planes. Some
representative functions for s(x, y) are a random array of points or a Fresnel
;one plate. The considerations are similar to those of coded apertures in Chapter
The decoding can be accomplished in a digital computer. For a given
en!:oded image I(x, y), any desired plane can be chosen by using the appro-
priate cross-correlation function s(x/m,, y/m,). The basic difficulty with this
system is that s(x, y) is fundamentally a nonnegative function. It thus has
limited capability for providing the desired autocorrelation peak. At best, the
autocorrelation will have a peak riding on a large plateau. This plateau effec-
tively represents an integration over a large portion of the image. This can
distort the low-frequency response and result in poor noise performance. As a
result, this approach has not been used commercially.

COMPUTERIZED TOMOGRAPHY

Motion tomography, at best, represents a limited ability to isolate a specific
plane. In general the contrast of the plane of interest is unchanged over that
f’f a projection radiograph. If a lesion in the plane results in a 1% difference
in recorded intensity in a conventional radiograph, it will continue to be 1%
different in the motion tomogram. The out-of-focus planes, however, will
be blurred.

In 1973 a revolutionary concept in tomography, known as computerized
axial tomography, was introduced by EMI Ltd. of England. This system pro-
vides an isolated image of a section within a volume completely eliminating
all other planes [Herman, 1980; Gordon, 1975; Ledley, 1976; Scudder, 1978;
Brooks and DiChiro, 1976a; Cho, 1974]. Thus the contrast of the image is
not diminished by intervening structures. Thus far, computerized tomography
has been extremely successful in clinical use. Lesions and organs that were
heretofore impossible to visualize are seen with remarkable clarity.

The basic system is shown in Fig. 7.4. An x-ray source is collimated into
a narrow beam and scanned through the plane of interest. The transmitted
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FIG. 7.4 Basic scanning system for computerized tomography. (Courtesy
of the Siemens AG-Bereich Medizinische Technik.)

photons are detected by a scanning detector at each position of the scan. This
same procedure is repeated at approximately 1° intervals for 180° so that a'set
of projections are obtained at approximately all angles. The resultant projec-
tion data are applied to a digital computer where an accurate two-dimensional
image is reconstructed, representing the linear attenuation coefficient in the
section of interest. The mathematics involved in the image reconstruction from
projection data will be described. .

This approach overcomes essentially all of the shortcomings of motlop
tomography. Only the section of interest is irradiated. Using carefully cali-
brated detectors, and limited only by the Poisson statistics of the number of
counts per measurement, this technique has provided almost uncanny visua-
lization of structures that were previously invisible. Radiologists have been
able to perceive lesions whose attenuation coefficient differed by less than
0.5% from the surrounding tissue. Thus, in a noninvasive fashion, an accurate
diagnosis is obtained.

RECONSTRUCTION MATHEMATICS—
ITERATIVE APPROACHES

The mathematics involved is a relatively old, but seldom used, field of study
involving the reconstruction of a two-dimensional distribution from its pro-
jections. The most straightforward, although computationally inefficient sol}ltlon
involves linear algebra. The two-dimensional image is reconstructed using a
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matrix inversion of the projection data. For images of reasonable complexity,
this is quite formidable. One general class of solutions involves an iterative
procedure. This is an attempt to find a two-dimensional distribution that
matches all of the projections. An initial distribution is assumed and it is
compared with the measured projections. Using one of a variety of iterative
algorithms, the initial distribution is successively modified. This method is
known as the Algebraic Reconstruction Technique, or ART [Herman, 1980;
Brooks and DiChiro, 1976a].

The ART system, illustrated in Fig. 7.5, is based on the very general
premise that the resultant reconstruction should match the measured projec-
tions. The iterative process is started with all reconstruction elements f; set to
a constant such as the mean f or zero. In each iteration the difference between

CROSS SECTION

f;; (CALCULATED
ELEMENT)

{MEASURED
[T T T T PIIIITTT] ‘U rosecTioN)

N ELEMENTS PER LINE

FIG. 7.5 ART system.

the measured data for a projection g ; and the sum of the reconstructed elements
along that ray YN, f, is calculated. Here fi; represents an element along the
Jth line forming the projection ray g;- This difference is then evenly divided
among the N reconstruction elements. The iterative algorithm is defined as

N
& — 2[5
[ =ry+ — — (7.22)

where the superscript ¢ indicates the iteration. The algorithm recursively relates
the values of the elements to those of the previous iteration.

As an illustration of the ART process we use a simple 2 X 2 matrix of
values and the assocjated measured projections.
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7 1" 8 13
N 1/
f1=6 | f,=7 |—12
f3=6 f4=2 —28

All six projection measurements, including the two verticals, .twq horizontals,
and two diagonals, have been made. Presumably, these. projection measure-
ments are all that is available and, from these, the matrix of ele.ments shown
must be reconstructed. We begin the process arbitrarily .by setting all values
to zero, calculating the resultant projections, and comparing them to the mea-
sured projections. The differences are calculated, divided by the two elements

per line, and added to each element.

0 0
]
Vertical rays: 0 0
0 0
— 9 —-0__
fi=ri=0+ M0 55 fi=fi=04"5-=45
56 | 45 |—10
Horizontal rays:
55 | 45 |—10
— 12 — 10
fi=ss+ 250 65 =454 55 =58
_ g — 10
ri=ss+ 85045 fi=454 5738
10\ /10
Diagonal rays: 6.5 55
45 | 35
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13 —-10
2

7—10
2

Thus the original elements are reconstructed. In general, for larger formats,
many iterations, using the same measurement data over and over, are required
for adequate convergence. The process is usually halted when the difference
between the measured and calculated projections is adequately small.

A number of variations on this general theme have been proposed. One
nonlinear formulation makes use of the known nonnegativity of the ‘density
values f;;,. Thus where f;; <0, it is set equal to zero. Another variation is
known as multiplicative ART, as compared to the previous original algorithm,
which is additive ART. In the multiplicative version the original density values
are multiplied by the ratio of the measured line integral g, to the calculated
sum of the reconstructed elements. This is given by

=7

fi=65+ s— =3 fi=55+

13— 10

fi=454+ —5—=6; [fi=35+ =2

[t =81y (7.23)
pIW 4

i=1

In multiplicative ART, each reconstructed element is changed in proportion to
its magnitude. This is in sharp contrast to additive ART, where each element
in the ray is changed a fixed amount, independent of its magnitude.

Although the iterative methods were the most popular in the earlier days
of computerized tomography, they have become almost completely supplanted
by direct methods due to problems such as computation time and convergence
accuracy in the presence of noise. The direct methods provide a linear recon-
struction formulation between a two-dimensional distribution and its pro-
jections.

DIRECT RECONSTRUCTION METHODS—
FOURIER TRANSFORM APPROACH

Direct reconstruction methods are based on the central section theorem, which
is illustrated with the aid of Fig. 7.6. As shown, a single projection is taken in
the x direction, for convenience, forming a projection g(y) given by

g0) = [ f(x, y)dx. (7.24)

This projection represents an array of line integrals in the x direction. For
demonstrating the central section theorem we use the two-dimensional Fourier
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FIG. 7.6 1llustration of the central section theorem.

transform of the distribution f(x, y) as given by
F(u,v) = jf f(x, y) exp [—i2n(ux + vy)ldxdy. (7.25)
Along the u = 0 line this transform becomes

FO,v) = [[ f(x, ) exp (—i2nv))dsdy

— [ £ vy ey
= 5,50} (126

where F,{-] represents a one-dimensional Fourier transform. Th.us, as shown
in Fig. 7.7, the dashed u = 0 line in F(u, v) is given by the Fourier transform

<

Flu, v}

u

~—F(gly) |

FIG. 7.7 Fourier domain illustration of the central section theorem.

of the projection of f(x, y) in the x direction. Since the tran§form gf e:ach
projection forms a radial line in F(u, v), we can fill F(u, v) by talflrl.g projections
at many angles and taking their transforms. Once filled F(y, v) is inverse traps-
formed to reconstruct the desired density f(x, ). This process can be studied
in more detail using Fig. 7.8. Using a two-dimensional distribution f(x, y),. an
array of line integrals are measured, each being a distance R from the origin
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FIG. 7.8 Projection of a two-dimensional function.

where the perpendicular to the line is at an angle 8. This forms a projection
given by

go(R) = f f f(x, Y)8(x cos @ + y sin @ — R)dxdy

= [ [77¢, )31 cos 6 — $) — Rirardg @27

where g4(R) is the projection information in the @ direction. The integration
takes place along line x cos @ + y sin @ = R or, in polar coordinates r, ¢,
rcos (6 — ¢) = R. The delta line 5(x cos 8 + y sin @ — R) sifts out the desired
line in f(x, y) to provide an effective line integration. The symbol gs(R) could
alternatively have been written g(R, @) since it is a two-dimensional function
of the various projection angles 6 and the distances R along each projection.
However, the symbol g4(R) indicates a series of one-dimensional measurements
at different distances R taken at a particular angle 6.

To provide a general derivation, the Fourier transform of the two-dimen-
sional function f(x, y) is given by :

F(u, v) = j f f(x, y)emwxtmdgy. (7.28)
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Expressing this in polar coordinates F(u, v) = F(p, f), where u = p cos § and
v = psin B gives

F(p, B) = [ [ f(x, pye-tzmstxconsevin gy, (7.29)

The general central section theorem is shown by again mainpulating the two-
dimensional Fourier transform to include the projection expression as given by

F(p, ) = [ [ 7, )3(x cos B+ y sin B — R) exp (—i2npRydxdydR. (1.30)

This expression clearly reduces to the basic Fourier transform relationship
of equation (7.28) by integrating over R. By isolating the expression for the

projection from equation (7.27), the Fourier transform of the image f(x, y) can
be rewritten as

F(p, f) = [ 84(R) exp (—i2mpR)dR (7.31)
Therefore,
Fp, p = gl{gﬁ(R)}-

Thus the Fourier transform of a projection at angle B, as defined in Fig. 7.8,
forms a line in the two-dimensional Fourier plane at this same angle. Since
the projection angle € and the resultant polar angle in the Fourier transform
plane f§ are identical, we can use the same symbol @ for both. The transform
of a projection in the transform plane, F(p, 8), is shown in Fig. 7.9. After filling
the entire F(p, ) plane with the transforms of the projections at all angles, the
reconstructed density is provided by the two-dimensional inverse transform as

fx,p) = J.J’ F(u, v) exp [i2n(ux + vy)ldudv

= sz do J:o F(p,0) exp [i2np(x cos § + ysin O)]pdp.  (1.32)
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FIG. 7.9 Two-dimensional Fourier transform plane of distribution.
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Figure 7.10 provides some physical insight into the central section theorem.
In the top figure is a projection of a two-dimensional distribution f(x, y). Using
Fourier transform techniques f(x, y) can be decomposed into an array of two-
dimensional sinusoids. Two of the sinusoids are illustrated. In the center figure
a projection is taken of a two-dimensional sinusoid. Since each ray experiences

x R
\ 4
g9g(R)
P
[ AN
/] \‘ [ &
7Y \
7/ K¢
Z J
™
fix,y) /

/QO(R)

FIG. 7.10 Projections of sinusoidal components of a two-dimensional
distribution.
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equal positive and negative contributions, the resultant projection is zero. In
the bottom figure the sinusoid is parallel to the projection angle. As a result, the
projection is a one-dimensional sinusoid. Thus each projection extracts only
those sinusoidal components at the projection angle. These components repre-
sent a line, as in Fig. 7.9, in Fourier space representing sinusoids of different
frequencies at a specific angle.

EXAMPLES USING FOURIER TRANSFORM
APPROACH

As an illustrative example we will consider two circularly symmetric cases of
simple geometries. Circularly symmetric examples are being used solely for
simplicity since the method is clearly applicable to any geometry. In the first
example the measured projections at all angles are given by

g¢(R) = 2 sinc 2R. (7.33)
The two-dimensional Fourier transform at each angle 8 is given by
F(p) = F{g/R)} = rect (12’_) (7.34)

where p, in this equation, is a one-dimensional variable along the @ direction.
Adding up the contributions at all angles is equivalent to rotating the rect
function over 180° to provide a symmetric two-dimensional frequency function

F(p, 8) = F(p) = circ p, (7.35)

where the circ function is a “pillbox” with unity radius and unity height as
defined in Chapter 2. The reconstructed density is the inverse transform of
this function as given by

f(x,5) = £ () = §-"{cire p} = 220, (7.36)

This “jinc” function, named for its similarity to the sinc function, has a similar
shape to the sinc function except that its zeros do not occur periodically and
the amplitude of the ripples fall off more rapidly. Thus the projection of J,(2zr)/r
is 2 sinc 2R, a result that is certainly not intuitively obvious.
For the second example of circularly symmetric objects we use a cosinu-
soidal projection
gs(R) = cos nR. (1.37)

As before, on each line in the transform, such as the u axis, we obtain

F(u)= ${6(u — 1) + 6(u + D).

Summing this pair of delta functions over 180°, we obtain

F(p)=40(p — %) (7.38)
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representing a cylindrical shell in the frequency domain. The density is again
given by the inverse transform. Using the Fourier-Bessel transform yields

16y = 2 [ Fpyp1aarp)dp — % tar). (7.39)

Again we reach the unanticipated result that the projection of a J,(+) function,
the zeroth-order Bessel function of the first kind, is a cosine function.

ALTERNATIVE DIRECT RECONSTRUCTION—
BACK PROJECTION

The computational problem with the central section theorem method shown
is that a two-dimensional inverse transform is required. For computerized
tomography this involves various interpolations and coordinate transformations.
We now consider alternative reconstruction systems based on the same general
principles but having distinct computational advantages. To do this we first
introduce the concept of back projection [Gordon, 1975].

In back projection the measurements obtained at each projection are
projected back along the same line, assigning the measured value at each
point in the line. Thus the measured values are “smeared” across the unknown
density function as if a line of wet ink, containing the measured projection
values, is drawn across the reconstructed density function. This is shown in
Fig. 7.11 for the case of an object consisting of a single point on the origin.
Each projection is identical. Intuitively, we know, from each individual pro-
jection measurement, that a point of density lies somewhere along the line of

+=
%§
N

FIG. 7.11 Projections of a point at the origin back projected.
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integration. It is thus reasonable, as an initial attempt at reconstruction, to
assign the measured value along the entire line. We are essentially stating that
we know that the point of density is somewhere along the line so that a “crude”
reconstruction will result if we assign the measured value along the entire line.

Mathematically, the back projection of a single measured projection
along the unknown density is given by

be(x, ) = j 2(R)3(x cos @ + y sin @ — R)dR (7.40)

where by(x, ) is the back-projected density due to the projection g,(R) at angle
6. Adding up these densities at all angles, we obtain

i 9) = [ blx, 5)d6
= J-: dé J': g/ R)O(x cos @ + y sin @ — R)dR (7.41)

where f,(x, y) is the crude reconstruction resulting from pure back projection.
This reconstruction is often called a laminogram. We will study the nature of
the distortion in this reconstruction and attempt to correct it.

Using (7.27) and (7.41), we find the impulse response using back projection.
We first find the projections g4(R) due to a delta function at the or1g1n 6(r)/nr
as given by

R = [ [ %l cos 0 — ¢) — Rirra

_[" f ) !’_;Qa[r cos (8 — ) — Rldrd

_ "-‘S%-)dqs — &R). (1.42)

J0

Thus, as expected intuitively, each projection of a delta function at the origin
is 0(R). These delta functions are back-projected giving the impulse response

hy(r):
hy(r) = L dé j“ S(R)O[r cos (§ — ¢) — R]dR

= r olr cos (6 — ¢)ld¢

),

r cos (0 — ¢)| evaluated at § = > T +¢

Il

1 (7.43)
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where we have made use of the delta function relationship [Bracewell, 1965]

ORI | (7.44)

where x, are the roots of f(x).

Knowing the impulse response to be 1/r, we write the reconstructed image
from back projection

Fix9) = f (5 pyse L (7.45)

This represents a poor reconstruction in the case of reasonably complex
images because of the “tails” of the 1/r response. Some early reconstructions
were obtained of medical images using pure back projection with marginal
results.

The 1/r blurring must be removed to provide the desired reconstruction.

One approach makes use of the frequency-domain representation of (7.45),
where

Fp,0) = £2.9) > 9) (7.46)

since the two-dimensional Fourier transform of 1/r is 1/p. An obvious cor-
rection method is to take the Fourier transform of f,(x, y), weight the resultant
F,(p, @) with p, and then inverse transform to provide the desired f(x, y). This,
however, has clearly not solved the computational problem since two two-
dimensional transforms are required.

FILTERED BACK-PROJECTION
RECONSTRUCTION SYSTEM

It is desirable to be able to use the elegant simplicty of back projection and to
undo the 1/r blur without requiring two-dimensional transforms. This is
accomplished by again making use of the powerful central section theorem.

We begin by restating the back-projection relationship for the laminogram
Su(x, y) as

i, 9) = ["d8 [ g(R,0)8(xcos 8+ ysing — RAR  (1.47)

and restructuring it into a Fourier transform mode by using the central section
theorem to substitute the inverse transform of F(p, 0) for g(R, ) as given by

fax = [T | [ [~ Fe, 0)e‘2""“dp:|¢5(x cosf 4+ ysin@ — RydR.  (7.48)
Performing the integration over R, we obtain

fi(x, ) = f: dé ji F(p, 6) exp [i2zp(x cos @ + y sin 8))dp. (7.49)
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To appreciate the significance of this relationship we restate the two-dimen-
sional inverse Fourier transform relationship in polar form as

1, y) = j:" 46 [ F(p, ) exp [i2mp(x cos § + ysin O)lpdp.  (1.50)

We modify this equation to conform with (7.49), where the @ integration is
from 0 to = and the p integration from —oo to oo as given by

fx, y) = jo do j_: F(p, 8) exp[i2np(x cos 6 + ysin 0)]| pldp.  (1.51)

This form is equivalent to that of (7.50), where the integrand is Hermitian.
This is clearly the case for physical systems where f(x, y) is real and F(p, §) =
F(—p, 8 + m). 1t is necessary to use | p| rather than p in (7.51) since the integra-
tion includes negative values.

Comparing (7.51) to the equation for the back-projected laminogram
(7.49), we see that they differ only by the | p| weighting as previously indicated.
Substituting F,{g4«(R)} for F(p, 0) in (7.49), and dividing and multiplying by
| p|, we obtain

flx,y) = fo do J‘_m f%;("‘)lexp [27p(xcos O + y sin O))| pldp.  (7.52a)

This equation provides an alternative interpretation to back projection. In
essence, the transform of each projection g4(R) has been weighted by 1/| p|
along each radial line in Fig. 7.9. This accounts for the blurred reconstruction
of f,(x, ). This can therefore be removed by weighting each transformed pro-
jection with | p| prior to back projection to create an undistorted reconstruction
as given by

flx,») = J: dé f 5’1{80(|1;)|}' 2] exp [i2np(x cos @ + y sin B)]| pldp. (7.52b)

When we operate on each projection g,(R) the radial frequency variable p
assumes the role of a one-dimensional frequency variable.

This reconstruction approach is known as the filtered back projection
system. It is widely used since it involves only one-dimensional transforms.
Each projection is individually transformed, weighted with the one-dimensional
variable | p|, inverse transformed, and back projected. This is seen by rewriting
(7.52) as

fGeyy=[ a8 " [ [ 5.dadRo)-1ple e |d(x cos 6 + y sin 8 — RYIR (1.53)

= ["d8 [” 5715 (8RO} 1p110Cx cos O + ysin @ — R)AR.  (1.54)

Here it is clearly seen that the function back-projected at all angles is a filtered
version of the projection g4(R), where the filter provides a | p| weighting. As in
any filtering operation in the frequency domain, we first Fourier transform,
multiply by the filter function, and then inverse transform.

CONVOLUTION—BACK PROJECTION

The back-projected function in (7.54) can be rewritten as

F1F {gR}-| o) = g R) * F1{| p|} (7.5%)
using the convolution theorem of Fourier transforms. The spatial equivalent
of filtering with |p| is convolving with the inverse transform of |p| [Horn,
1978; Tanaka, 1979; Scudder, 1978]. This introduces the convolution-back
projection method of reconstruction, which is by far the most widely practiced.
Instead of filtering each projection in the frequency domain, each projection
8«(R) is convolved with a function c(R) and then back-projected. Since the

f:onvolution function ¢(R) is chosen to correct the 1/r blur, the reconstruction
Is exact as given by

f(x,y) = jo dé J'_: [8(R) * c(R)}6(x cos  + y sin @ — R)dR.  (7.56)
As indicated in (7.55), the convolution function is given by

«R) =F"'{|pl}. (7.57)
. Unfortunately, this transform is not defined since the function is not
integrable. However, we can evaluate the transform in the limit as

o(R) = ff“{{i_r.rol |p|e“""} (7.58)
which is an integrable function. Evaluating the transform, we have
|ple=<l! = ple=*H(p) — e***H(— p)] (7.59)

where H(-) is the unit step function, which is unity for positive arguments and
zero otherwise, as defined in Chapter 2. We first find the inverse transform of
the bracketed portion as given by

fF—l{[.]} e I: e-epenanpdp — -[: ecpeﬂudep

___{4mR

~ €2 + (2nR)y? (7.60)
The completed inverse transform is evaluated using the relationship
F-{pA(p)} = zl—na'(R). 7.61)
Therefore,
2 _

5| plemt} = 51 (g = AE—ATRY (7.62)

(e* + 4nZR?)? :
The convolution function ¢(R) is therefore the limit of (7.62) as € — 0.

The various properties of this convolution function can be put in a logical
framework, keeping in mind the fact that the convolution function is the inverse
transform of | p|. Using known theorems of Fourier transforms, we know that
the average value of a function is equal to the value of its transform at the
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origin. Thus, since | p | is zero at the origin, we know that the average integrated
value of ¢(R) must be zero. This is the case for the function given by (7.62).
Using this same relationship in reverse, we know that the value of ¢(R) at the
origin must approach the integrated average of | p|. The area of | p| is equal
to the limit, as p — oo, of 4p2. This is in keeping with the value of c(R) at the
origin in the limit, as € — 0, of 2/e2.

Figure 7.12 illustrates a simplified sketch of the convolution funption
¢(R). In the vicinity of the origin, where R? < €%/4n?, the function is given by
2/€*. For higher values of R, where R?>> €?/4n?, the function approaches
—1/272R?, as shown in Fig. 7.12.

C(R)
4

FIG. 7.12 Convolution function to undo !/r blur,

It is interesting to note that the desired convolution function ¢(R) could
have been devised without using the central section theorem. We can make use
of linear systems considerations in that any function ¢(R) which results in the
proper reconstruction of an impulse, without the 1/r blur, will accurately
reconstruct all functions. For example, in equation (7.56), we require a c(R)
that will produce an impulsian f(x, y) when g¢(R) == 6(R), the projection of an
impulse at the origin. Essentially, this requires that ¢(R), back-projected at all
angles, will produce an impulsian reconstruction.

For the ¢(R) in the limit given in (7.62), back-projecting at all angles
provides the system impulse response as given by

h(r) = jo dé j_: ¢(R)d[r cos (9 — ¢) — R]JdR

. * €2 — 4m2r2 cos? (0 — @)
- 1:‘—1301 2J; le2 + 4m*r? cos? (6 — ¢)]2d0' (7.63)
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Performing this complex integration, we arrive at the result

. € '

where K is a constant. This is clearly an “impulsian” function having a value
of K/e€? at the origin and zero elsewhere. Other forms of ¢(R) in the limit provide
similar results [Horn, 1978).

We now consider more realistic convolution functions which have well-
behaved properties. For example, any physical system has an upper frequency
limit imposed by either the geometry of the system, such as a finite beam size,
or by electrical limitations such as noise. Thus the filtering imposed by the
convolution filter could be of the form | p|rect (p/2p,), where p, is the cutoff
frequency. This filter is illustrated in Fig. 7.13,

. > P
~Po Po

FIG. 7.13 Filtering function with band limiting.

To facilitate taking Fourier transforms, this function is modeled as

| plrect(ﬁ—o) = [rect (2%) - A(-,%)] (7.65)

where the convolution function is given by
F-! {I plrect (ﬁ—)} = po(2 sinc 2p,R — sinc? pyR). (7.66)
0

Thus a bandlimited function can be reconstructed by taking each projection
8s(R), convolving with po(2 sinc 2p,R — sinc? p,R), and back projecting. If we
take the limit of this bandlimited function as p, — oo, we get an expression
similar to that of (7.62).

In practice, a wide variety of convolution functions are used which are
similar to that of (7.65). The convolution kernel ¢(R) is a convenient place to
accomplish the overall system filtering in addition to the basic | p| filtering. In
general, as with most imaging systems, these filters are a compromise between
signal-to-noise ratio and resolution. Thus these filters generally involve the
product of | p| and some high-frequency cutoff filter. Since the sharp cutoff of

a rect function generally causes “ringing” at edges, gentler rolloff characteristics
are usually used.



RECONSTRUCTION OF THE ATTENUATION
COEFFICIENT

The reconstruction methods studied indicated how a two-fiimensional function
could be reconstructed from its line integrals. These line 1ntcgral§ are the sum
of the function in different directions. In the case of x-ray _attenuatlon, however,
we measure the exponent of the desired line integral as given by

1= I,e-futis ' (7.67)

where, for convenience, we consider a single ray in the z dircc.tiOt.l. Note that
we have a nonlinear relationship between the measured Pro;ectlon and the
desired line integral. This non linearity can be removed if we use, as our
measured data, the log of the measured transmission where

In (%) _ I () dz. (1.68)

In x-ray attenuation considerations, the logarithm of the measureq intens11t1y Z.t
many positions and angles is used with' one pf the reconst.ructlon met ods
previously described to form a cross-sectional image of the linear attenuation
ients. .
co;'f:l:emoval of the nonlinearity has within it a number of inherent assump-
tions, namely, that the source is monoenergetic and thftt the beam is 1qﬁn1-
tesimally narrow. Unfortunately, both qf these assumptions ]egd to re.lapv:}y
impractical systems as far as getting sufficient photon flux to obtain a statistically
meaningful measurement. Thus, to provide a source of adeql.laFe strgngth, a
polychromatic source is used providing a measured transmission given by

1= f S(8) exp [—f u(z, 8)dz |dg (7.69)

where S(8) is the source spectrum. In this case the line integral is not directly
measured and the resultant behavior is nonlinear [Stonestrom et al., 19§1].
Here we attempt to reconstruct x(8), where 8 is ‘the average energy emerging
from the object. Taking logs as in (7.68), we obtain

2
In (%) = 4 + o, I u(z, 8) dz + a2U paddz [ +... (.70
where J, = j S(8)d(8), the total source energy. We have a distorted version of
the desired line integral. ' ' o
The nature of the distortion can be seen by studying a single pixel in a
cross section traversed by a number of rays at different angles. Along each ray
we are attempting to measure the line integral or the sum ot: the at.tenuatl.on
coefficients of each pixel. The attenuation coefficient of the single pixel being
studied should contribute a given x to each sum. However, each ray can con-
tain different materials providing different degrees of: spectral .Shlft and a
resultant different average energy &. Thus the single pixel has different con-
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tributions to each ray sum, resulting in a distortion in the attempted reconstruc-
tion. From this discussion it is seen that the largest distortions will occur in
the vicinity of bone where the greatest spectral shifts occur. In early head scans
this effect resulted in a severely cusped region immediately inside the skull,
making diagnosis of this region very difficult.

These nonlinear terms cause distortions in the reconstructed image which
can be quite severe. As a result, most instruments use a nonlinear function of
the log of the measurements in an attempt to compensate for the nonlinearity.
Unfortunately, the degree of nonlinearity depends on the materials in the path,
which are not known beforehand. This problem has been minimized in some
computerized tomography scanners by using a water bag around the region
being scanned, thus providing a constant known path length. This approach
still provides some error since the amount of bone and air within each path is
still unknown. Other approaches are under investigation. In one, an initial
reconstruction is provided which includes the distortions or spectral shift arti-
facts. From this initial reconstruction the amount of bone and soft tissue in
each path can be estimated and used to provide a more accurate nonlinear
correction.

The other nonlinearity is that due to finite beam size. The projection for
a finite beam size is given by

1= [{ sx, y) exp [- [ x5, z)dz]dxdy 7.71)

where s(x, y) is the source intensity as a function of its lateral dimensions. For
clarity we assume a monoenergetic beam in this case. As before, the error with
this system depends on the variation in H(x, y) over the beam size s(x, y). If,

over the beam region, u(x, y) is relatively constant at some value A, the measure-
ment can be approximated as

In (%) ~ f A(z)dz (1.72)

where

I, = '” s(x, y)dxdy.

Unfortunately, there are many discontinuities in the attenuation coefficient,
such as the edges of bone, so that this approximation is often inaccurate. This

remains a source of error in existing instruments which is minimized through
the use of relatively narrow beams.

SCANNING MODALITIES

In Fig. 7.4 we illustrated a simple method of data acquisition where a single
source and detector are synchronously scanned to provide the required projec-
tion data. This system, because of chronology, is known as a “first-generation”
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scanner. It is identified by a two-motion translate-rotate scan using a single
detector. The principal difficulty with this instrument is its relatively long scan
" time, on the order of a few minutes. Only a small portion of the total X-ray
output of the x-ray tube is utilized, requiring relatively long scanning times to
achieve adequate statistics. These long times are acceptable, however, for rela-
tively stationary regions such as the head. These scanners continue to achieve
relatively wide use because of their low cost. However, even as a head scanner,
there are continuing problems with uncooperative patients such as. children
and patients with poor motor control. '

Figure 7.14 is an illustration of a second-generation scanner at various
intervals of the scan. Here the same translate-rotate motions are used with a
multiple-detector system. In this way, several projections are acquired during
each traverse. For example, if there are 10 detectors, each 1° apart, a single
translation acquires all 10 projections. During the subsequent rotation the
gantry is indexed 10° rather than 1°, resulting in a 10: 1 time reduction. Since
10 times as much of the x-ray output is being utilized, the scan time is cut
accordingly. Using this approach, scan times have been reduced to a fraction
of a minute.

SOURCE

SOURCE

MULTIPLE
DETECTOR
ASSEMBLY

FIG. 7.14 Second-generation scanner, using multiple detector translate-
rotate system.
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One important feature of both first- and second-generation scanners is
self-calibration. Either preceding or following each traverse, each Xx-ray beam
impinges on the detector with no intervening material. This provides a reference
measurement of Jo, the intensity in the absence of attenuation. This value is
required to calculate the line integral. Although it is theoretically constant,
drifts in both source and detector often require frequent measurements.

The third-generation scanner involves rotation-only of a fan beam, as
illustrated in Fig. 7.15. Both the source and the detector are rotated about a
common center within the patient. The detector array is a few hundred con-
tiguous elements. The primary advantage of this approach is the mechanical
simplicity and associated ability to provide very high speeds, with scan times as
low as 1 sec. The detectors can be relatively deep and positioned along the
rays radiating from the source. This relatively long path length has enabled
the use of gaseous ionization detectors using xenon.

X-RAY
TUBE

=

DETECTOR

X-RAY TUBE\% /// ARRAY

\\‘———’/

FIG. 7.15 Third-generation fan-beam scanner, using a rotating source
and detector array. (Courtesy of the General Electric Medical Systems
Division.)

One disadvantage of this system is the lack of self-calibration. At no point
after the patient enters the machine can the system be calibrated. In the earlier
days of these instruments “ring artifacts” were prevalent due to errors in indi-
vidual detectors which were uncalibrated. These have since been minimized
through improved detectors and software corrections. A commercial third-
generation system is illustrated in Fig. 7.16.

The fourth-generation scanner is characterized by a rotating fan beam
impinging on a 360° stationary detector array as illustrated in Fig. 7.17. A source,
generating a fan beam, is rotated around the patient. The transmitted rays are
collected by the stationary detector array. This simple mechanical motion of
the source only allows for a rapid scan time. In addition, the system is again
self-calibrating since, at different portions of the scan, each detector is irradiated
by the source without any intervening material. Also, the system is relatively
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FIG. 7.16 Third-generation commercial scanner. (Courtesy of the General
Electric Medical Systems Division.)

immune to ring artifacts since detector errors are distributed throughout the
image, rather than representing a specific radius. . .
One difficulty with the scanner is the varying angle at which the rays §tr1ke
the detectors. In the third-generation scanner the detectors could be a}llgned
along the rays since the entire structure rotated. Here, however, at .dlﬁ'erent
source positions the rays strike a given detector at different angles. Th.IS means
that the detectors should be relatively shallow to avoid the rays entering adja-
cent detectors. To provide high quantum efficiency with th.ese shallo.w detectors,
high-z materials are used such as scintillators with hlgl} atomic numbers.
Gaseous detectors, having lower linear attenuation coefficients, are not used

with stationary detector systems.
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STATIONARY DETECTOR ARRAY

FIG. 7.17 Fourth-generation scanner, using a rotating fan-beam and a
stationary ring detector array.

The third- and fourth-generation scanners derive their measurements using
fan-beam rather than parallel-beam projections. These require somewhat modi-
fied approaches to the reconstruction problem. One approach is known as
re-binning, where the various fan-beam rays from different projections are
reassembled as parallel-beam projections. These then require the same recon-
struction algorithms as the first- and second-generation scanners. An alternative
approach is the use of a modified convolution back-projection system [Gullberg,
1979; Denton et al., 1979]. Here the convolution kernel is slightly different
and the back projection involves a quadratic weighting factor rather than the
uniform weighting of the parallel rays. This latter algorithm is widely used in
existing scanners.

The image quality of these systems has improved significantly in recent
years, as has. their diagnostic value. Typical head and body images made with
a third-generation scanner are illustrated in Figs. 7.18 and 7.19.
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FIG. 7.18 Cross-sectional head images at different levels, made with a

third-generation scanner. (Courtesy of the Siemens AG-Bereich Medizin- FIG. 7.19 Cross-sectional body images at different levels, made
ische Technik.)

third-generation scanner. (Courtesy of the Siemens AG-Bereich Medizin-
ische Technik.)
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NOISE CONSIDERATIONS
IN COMPUTERIZED TOMOGRAPHY

The noise considerations of the measurements in computerized tomography
are similar to those of projection radiography [Chesler et al., 1977; Brooks
and DiChiro, 1976a]. We have an array of independent measurements, each
having the general form

N, = noA exp (—- L ydl) | (1.73)

where N, is the number of detected photons at each measurement, n, is the
incoming photon density in photons per unit area, 4 is the active area of the

detector receiving the impinging x-ray beam, and J. udl is the ith line integral
. i

of the cross section u(x, y), representing one of the rays. For simplicity, the
collection efficiency # is assumed to be unity, a reasonable assumption with
available detectors used in CT. As in projection radiography, the noise or
standard deviation of each measurement is ./ N, because of the Poisson statistics.

In computerized tomography, however, we first calculate the line integrals of
4 using logs and then, using the line integrals, reconstruct the values of u. The
line integrals are given by

g = f, pdl = In (%‘:) (1.14)

where N, = n,A, the incident number of photons per measurement. Using this
relationship, we calculate the mean g, and o,,, the standard deviation of the line
integral resulting from the uncertainty in the measurement of N;.

The mean and variance of the line integral of the projection have been
derived in Chapter 6. For a reasonably large number of photons per measure-
ment N,, the mean and variance of the line integral are given by

N
1 0
& = n( ‘) (7.75)
1
o ~ — 7.76
& Ni ( )

where N, is the mean of the number of counts per measurement.
Using these statistics of the line integral measurement of the reconstructed
image u(x, y), we wish to analyze the signal-to-noise ratio as given by

SNR — ¢4 1.77)

]
where C, as with projection systems, is the fractional change in 4, Z is the mean,
and g, is the standard deviation. We now proceed to calculate & and o, for a set
of dlscrete projections in an appropriately normalized fashion. For convenience
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we introduce the notation R’ = r cos (@ — @) so that the back-projection opera-
tor takes the form (R — R’).

Using the convolution-back projection system, the resultant reconstructlon
is given by

u(x, 3) = [ [8lR) » c(R)1d6 (7.78)

where g,(R) represents the projection at the angle 8, ¢(R) is the convolution
function, and each has been convolved with 6(R — R’), the back-projection

operator. For studying noise we use a realistic model of M discrete projections
as given by

2 = 51 (R) * o(RY1AG (7.79)

where 4 is the estimate of u. To evaluate the required normalization and
facilitate the use of transforms, we express this finite sum in integral form as

p=M f " [g(R) * c(R")}do (7.80)

where A@ = n/M. This can be expressed as a two-dimensional convolution of
the desired function u(r, ¢) as

A = h(r, @) = u(r, §) (7.81)

where A(r, ¢) is the two-dimensional impulse response as given by

Kr, ) = _"7{_ f " lr cos (0 — $)]d6. (7.82)

For this analysis it is convenient to normalize the area of A(r, ¢) to unity so that
the reproduced values of 4, in broad constant areas, will not be scaled and will
represent the correct average value. We thus require that

j:" [ hr, @yrarag = 1. (7.83)

The impulse response having a unity area is equivalent to its Fourier transform
H(p) being unity at the origin.
Taking transforms using equation (7.82), we obtain

=40

where H(p) is the transform of the circularly symmetric impulse response and
C(p) is the Fourier transform of the convolution function ¢(R). Division by | p|
is again the affect of back projection. C(p) can be decomposed as given by

Clp) = |p|S(p) (7.85)
where | p| removes the back-projection blur and S(p) is the system filter. Thus

(7.84)
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the normalization procedure requires that

S(0) = All

For example, using the rectangular filter of Fig. 7.13, we obtain

Cp) = 19| & rect (-2%)- (7.86)

We will calculate the signal-to-noise ratio using this filter function.

In taking the variance of the estimate of u we use the statistical property
that the variance of a sum of independent measurements is equal to the sum of
the variances. For a weighted sum of measurements, the weightings are squared
in accordance with the definition of the variance in (2.49). Since each measure-
ment is weighted by ¢(R), the resultant measurement variance is weighted by
[¢(R)]>. The variance of the reconstruction is therefore the variance of the
measurements caopvolved with [c(R)}? and back-projected. In integral form this
is given by
M

2
o
“

o7 (R") * [c(R")]*d6 (7.87)
where o} (R) is the variance of g, along each projection. In the continuous case,
from (7. 76), it is given by

: a%(R) = (7.88)

1
Ai(R)h
where 7i,(R) is the average transmitted photon density and 4 is the height of the
beam normal to the section. The 71/ represents the number of transmitted photons
per unit distance along the projection.

To achieve useful results, we assume a typical radiographic object where
the density of transmitted photons 7i(R) is relatively constant and can be
approximated by a constant 7. In that case the convolution becomes an integral
of ¢*(R) and the variance becomes

g2 = M 1 f a9 f c*(R)dR — 1‘1 _CHR)R. (7.89)
We evaluate this integral using Parseval’s theorem, giving
o= | 1ctorrdp. (7.90)

Using the normalized rectangular filter from (7.86), we obtain

p _ 1 2p;.
o? nhf p rect 2p)dp M3 (7.91)
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The resultant signal-to-noise ratio is therefore

SNR—C” £"”M =372, " (1.92)

It is more useful to structure the result, as before, in terms of resolution
limitations imposed by the detector width w so that the trade-off between
resolution and signal-to-noise ratio is readily visualized. Obviously, increasing
the bandwidth p, without bound would be poor design since the signal-to-noise
ratio would become poorer while the resolution would continue to be limited
by the effective detector width w. Thus, in a good design, the bandwidth p, is
compatible with a resolution equal to the detector width. Thus we have

po =3 (1.93)

where K is a constant of order unity depending on the shape of the system
response. This constant will vary slightly depending on which resolution criteria
is used. The signal-to-noise ratio then becomes

SNR = K'Cji./nhM w32 (7.94)
where K’ is a combined constant, again of order unity.
It is indeed interesting to study the implications of the resultant signal-to-
noise ratio. Considerable insight can be derived by structuring this relationship
in terms of N, the average number of counts per measurement as given by

SNR = K'Ci~NM w (7.95)
where N = 7id = fiwh.

In our noise studies in projection radiography in Chapter 6, the signal-to-
noise ratio was shown to be dependent solely on the number of counts per
measurement. The counts per measurement were governed by the imput radia-
tion, the body attenuation, and the area of a pixel. Here we see the additional
factor w. Thus, in computerized tomography, a higher-resolution system suffers
an additional noise penalty, over and above the reduced number of photons
per element for a given dose. This increased penalty is a result of the convolution
operation, which couples the noise values of adjacent measurements into each
measurement. The procedure that decouples the signal information, removing
the 1/r blur, increases the noise since the signal is subjected to a ¢(R) convolution
while the noise variance experiences a ¢2(R) convolution as indicated in (7.87).

The analysis using a continuous measured projection g4(R) ignored the
finite width of the detector w. Effectively, for a simple single scanned detector
system as shown in Fig. 7.4, the projection is being convolved with a detector or
beamwidth function such as rect (R/w). This can be treated as part of the overall
convolution function ¢(R). Thus ¢(R) becomes the convoution of rect (R/w) and
the function used for reconstruction. For detector arrays this situation becomes
more complex because of the aliasing, which is introduced when ge(R) is sampled.



PROBLEMS

.1 In alinear tomography system a source a distance d from the film is moved

uniformly an amount X in the x direction with the film moved an amount
kX in the opposite direction. A sinusoidal transparency having a trans-
mission

t =a -+ bcos 2nfox

is imaged. At what depths z will the sinusoidal component at f;, disappear?

"2 In an x-ray imaging system the desired information is at plane z = d/2

and the undesired structure, at plane z = 2d/3, consists of a symmetrical
square wave in the x direction of period W.

(a) Find the parameters k and X of a linear motion tomography system
that will focus on the desired plane and eliminate the square-wave struc-
tures. '

(b) At what other depth planes will this square-wave grating disappear?

.3 An x-ray source, parallel to and a distance d from the x-ray recorder, has

a pattern in the x direction of rect (x,/X). It is moved linearly in the x
direction an amount D with the recorder moved in the opposite direction
an amount kD where D > X.

(a) Find the two z distances for placing a transparency at which the point-
spread function due to the source alone is equal to that due to the motion
alone.

(b) Plot the point response at the recorder, in the x direction, for these
two z planes labeling the break points.

(c) Plot the point response for planes at z=d,z=d/(l + k), z=
dl(1 + k/2).

1.4 In a linear tomography system a source is moved a distance 4 in the x

direction with the recorder moved kA in the opposite direction. The source
distribution in the x direction is rect (x/ X), a distance d from the recorder.
(a) At what two depth planes is the response a rect function? What are
the widths?

(b) At what two planes is the response a triangular function, and what is
the width of the response at each plane?

7.5 In a linear tomography system the source is translated in the x direction

at a velocity » for a time interval 7. The recorder is linearly translated in the
opposite direction with a velocity kv for the same time interval. The source
distribution in the x direction is given by rect (x/X). '

(a) Find the overall point response in the x direction as a function of z.
(b) Find the thickness of the tomographic cut, which is defined as the
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distance between those z planes where the size of the response due to the
source motion alone is equal to the response size due to the source alone.

7.6 An x-ray imaging system consists of a circular disk source of radius r,

separated a distance d from a film-screen system which has an impulse
response circ (r/r;). The source is linearly translated in the x direction an
amount A4 with the film moved kA in the opposite direction.

(a) Find the impulse response of the system for a transparency at plane z.
(b) A transparency consists of two pinholes separated in the x direction by

:S’. Over what depth range can the transparency be placed with the resultant
Images separated, that is, not overlapping?

(©) Repeat part (b) for two holes of radius 7,.

Make th? necessary assumptions concerning the relative dimensions such
that the images are separable in the absence of translation.

7.7 (a) Find the projection space g(R, 0) of a two-dimensional function f(x,

¥) = cos 2nf,x. psing the filtered back-projection reconstruction system,
find the back-projected function. Show that this function results in a correct
reconstruction.

(b) Repeat part (a) for f(x, y) = cos 2max -+ cos 2rby and f(x,y) = cos
2n(ax + by).

7.8 Find the circularly symmetric function f(r) which has a projection at all

angles of
P(R) = ,/1 —R? rect%-

[Hint: Use Fourier transform tables in Bracewell (1965).]

7.9 The area of a two-dimensional function is {[f Cx, y)dxdy.

(a) Find an expression for the area in terms of the projection g4(R).

(b) Show that the function Ag(R)A4(6) cannot represent a projection g(r, 8)
unless 4,(@) is a constant.

7.10 In a computerized tomography system each projection is obtained using a

7.11

ur'xiform scanning beam of width W instead of an infinitesimal pencil beam.
Find the resultant estimate f(x, y) of the function JS(x, y) using a conven-

tional reconstruction system that does not take the beam width into
account.

Find the signal-to-noise ratio of the computerized tomography reconstruc-
tion of a lesion immersed in a 20-cm cylinder of water whose attenuation
coefficient is 5 9 different than that of the water. A scanned source is used
providing 100 projections at 0.1R per projection. The detector and beam

dimensions are 2.0 X 2.0 mm. Make appropriate assumptions about the
reconstruction filter.



7.12 Projections 8s(R) are taken of a unit square where S(x, ) = rect (%) rect
.

(@) Find a general expression for gs(R) and the particular functions for
0 = 0° and 45°,

(b) Using the method of filtered back projection, find the Foyrier transform
of the back-projected function for the general case and for § = (° and 45°,

Nuclear Medicine

organs of interest, these become radiating sources. Thus the imaging problem in
nuclear medicine is that of defining a three-dimensional source distribution
rather than a distribution of attenuation coefficients,

It is important to point out that, in general, much smaller amounts of



