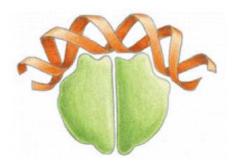
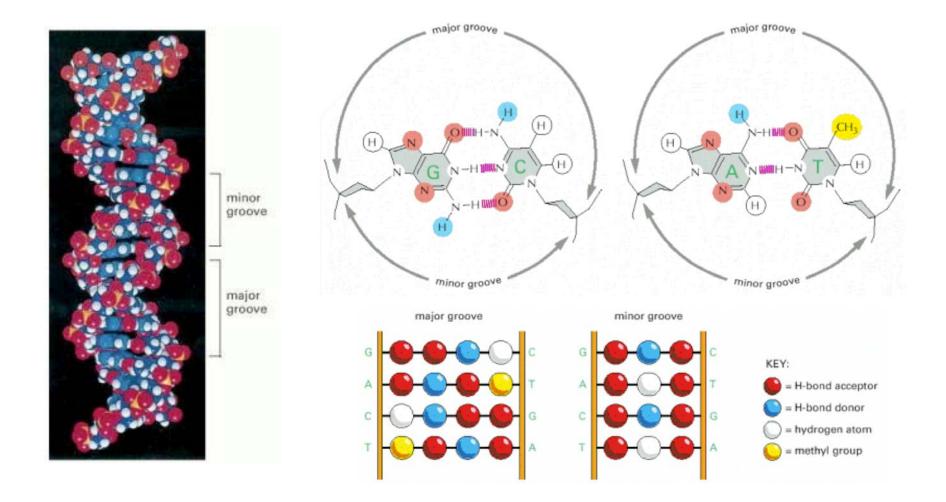
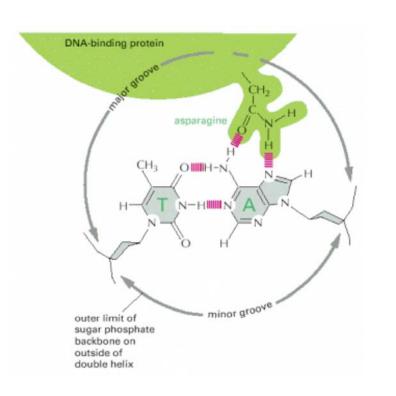
Topic 1: Protein-DNA Interaction

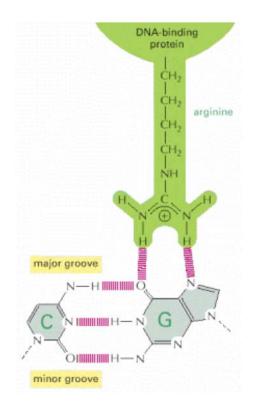
• Goals:


- find DNA binding target seq for each transcription factor (TF)
- find the affinity of a TF to its DNA target as a function of its cellular concentration *in vivo*
- find how the TF-DNA affinity may be modulated by the target sequence
- Problems:
 - thousands of TFs each with distinct target sequence; only a few characterized in detail experimentally
 - ab initio molecular calculation difficult even when TF-DNA cocrystal structure available
 - need to deal with the entire genomic DNA seqs in vivo

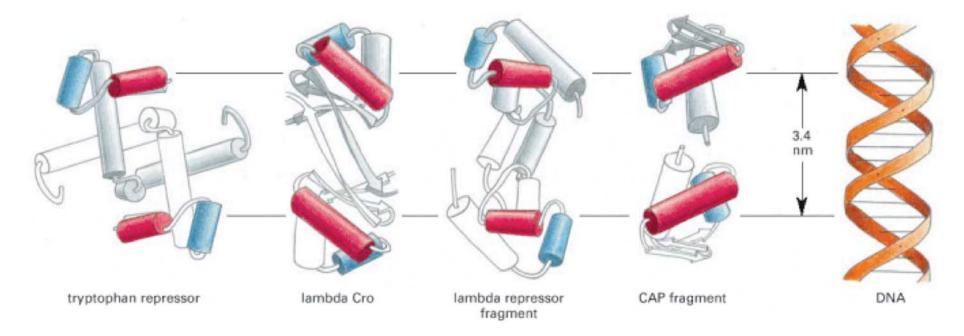
Statistical physics:


- → ways to think quantitatively about TF-DNA interaction in the absence of detailed microscopic information
- → link from molecule to function

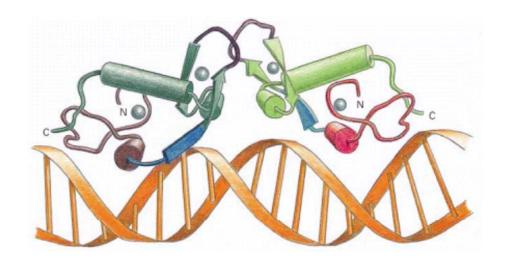

A. Empirical facts

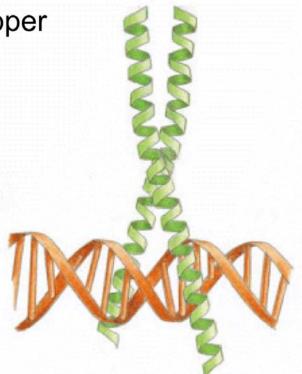

- 1. Transcription Factors
 - size: ~5nm (10-20 bp)

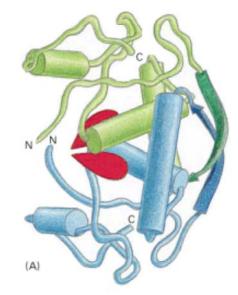
• molecular basis of sequence recognition

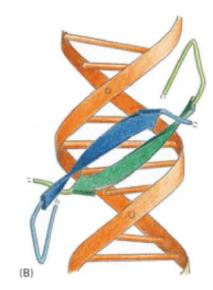

structure of a TF must place the appropriate amino acids next to the base pairs they contact

contact between TF and DNA

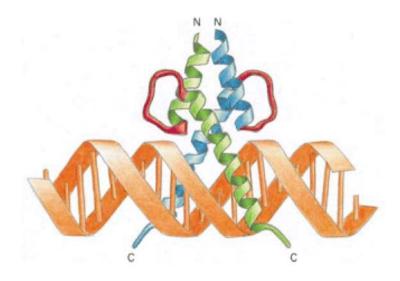

- various molecular strategies
 - Helix-Turn-Helix


well-known examples in bacteria (note: homodimers)


- zinc-finger domain



- leucine zipper



- beta-sheets

- helix-loop-helix

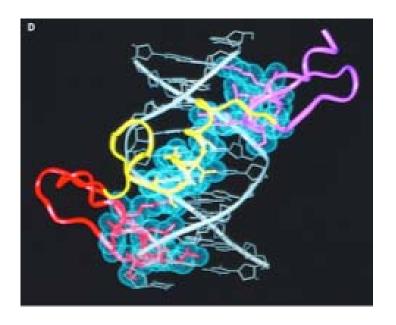
2. DNA binding sequences

• typically 10-20 bp in bacteria

protein	target sequence				
lac repressor	5' AATTGTGAGCGGATAACAATT 3' TTAACACTCGCCTATTGTTAA				
CRP	TGTGAGTTAGCTCACT ACACTCAATCGAGTGA				
λ repressor	TATCACCGCCAGAGGTA ATAGTGGCGGTCTCCAT				

- lots of sequence variants
- consensus sequence often palindromic
- common to have 2~3 mismatches from the core consensus sequence
 -- "fuzzy" binding motif

ATTCTGTAACAGAGATCACACAAA CCTTTGTGATCGCTTTCACGGAGC AAAACGTGATCAACCCCTCAATTT AACTTGTGGATAAAATCACGGTCT **GTTTTGTTACCTGCCTCTAACTTT** TTAATTTGAAAATTGGAATATCCA AATTTGCGATGCGTCGCGCATTTT TTAATGAGATTCAGATCACATATA **AATGTGTGCGGCAATTCACATTTA** GAAACGTGATTTCATGCGTCATTT AAATGACGCATGAAATCACGTTTC TTGCTGTGACTCGATTCACGAAGT TTTTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA **ATAATGTTATACATATCACTCTAA** CGATTGTGATTCGATTCACATTTA **GTTTTGTGATGGCTATTAGAAATT** GAACTGTGAAACGAAACATATTTT AATGTGTGTAAACGTGAACGCAAT TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAAGCAACATCACGAAAT TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT **ATTATTTGAACCAGATCGCATTAC** TAATTGTGATGTGTATCGAAGTGTTGTGA......TCACA.....


3. TF-DNA interaction

- passive (no energy consumption)
- strong electrostatic attraction indept of binding seq e.g., [TF - DNA] > 10 × [TF]_{free} for LacI in 0.1M salt
 → non-specific binding: G_{ns} - G_{cyto} ≈ -15RT (RT ≈ 0.62 kcal/mole at 37C)
- additional energy gained from hydrogen bonds to preferred sequences

strongest binder: $G^* - G_{ns} \simeq -15RT$

• <u>graded increase</u> in binding energy for sequences with partial match to the preferred sequence

relative binding affinity for Mnt

Binding energies for Mnt (in $k_B T \equiv 1$):

pos.	10	11	12	13	14	15	16	17	
A	1.8	2.4	1.6	1.0	0	2.1	0.8	1.1	
C	2.4	1.9	4.2	2.1	0.3	0	0	0	
G	0	1.6	0	0	1.2	3.2	1.0	1.2	
T	3.0	0	2.2	2.2	0.6	2.2	0.7	0.3	
A 1.8 2.4 1.6 1.0 0 2.1 0.8 1.1 C 2.4 1.9 4.2 2.1 0.3 0 0 0 G 0 1.6 0 0 1.2 3.2 1.0 1.2 T 3.0 0 2.2 2.2 0.6 2.2 0.7 0.3 (D.S. Fields, Y. He, A.Y. Al-Uzri & G. Stormo, 1997) 1.97									
(from competitive binding expts)									

(from competitive binding expts)

- → weak energetic preference -- weak specificity
- → similar results for other TFs studied (e.g., Lacl, λ -Cl, λ -Cro)
- double mutation: binding energy approx additive

- Issues to be addressed here:
 - range of TF-DNA affinity in vivo
 - dependence of this affinity on variation in target sequence
 - why weak specificity of TF-DNA interaction? ["design rule" for TF]
 - why fuzzy motifs
 [choice of DNA targets]
- Issues not addressed:
 - what is the target sequence of a given TF [can be probed experimentally]
 - fluctuations in TF-DNA binding