over 40 papers and is already taking a leadership position on the national scene as co-convener of the Supersymmetry Working Group for the American Linear Collider collaboration. Dr. Feng is a phenomenologist that deals with the reality emanating from actual experiments, pieces the results together to refine existing theories that are testable with the next generation experiments. Most recently Dr. Feng has boldly postulated that ultra high-energy cosmic rays may create microscopic black holes. In particular, the black holes created by cosmic neutrinos in the Earth should evaporate, and the resulting hadronic showers, muons, and taus may be detected in neutrino telescopes below the Earth's surface. Our very own Professor Steve Warwick is responsible for the Amanda detector located at South Pole and this facility will now be retrofitted to detect this predicted behavior. Perhaps one of Dr. Feng’s most difficult and impressive accomplishment to date was his recent successful lecture to a group of high school teachers explaining extra dimensions.

Assistant Professor Zihong Lin is a computational plasma physicist from Princeton Plasma Laboratory. Dr. Lin received his bachelor’s degree in physics from Beijing University in 1989 and his Ph.D. in Physics in January 1996 from Princeton University. He then spent two years as a DOE Fusion Energy Postdoctoral Fellow, four years as a Staff Research Scientist, then a Research Physicist, all at the Princeton Plasma Physics Laboratory. He received Princeton University’s Kaul Foundation Prize for Excellence in Plasma Physics and Technology Development in 1999, a 2000 U.S. Department of Energy Early Career Award in Science and Engineering, and the very prestigious 2000 U.S. Presidential Early Career Award for Scientists and Engineers. He is the author of over two-dozen research papers appearing in the finest plasma physics journals.

Assistant Professor Thorsten Ritz is a biophysicist. His appointment is part of a cluster of four FTE allocated to the Schools of Biological and Physical Sciences for a Molecular Design Initiative. Dr. Ritz received his Diplom degree from the University of Frankfurt in 1996 and then joined Klaus Schulten’s theoretical biophysics group at the University of Illinois. He finished his Ph.D. under the direction of Schulten and Nienhaus at the University of Ulm in 2001. Then Dr. Ritz received a post-doctoral fellowship from the Fetzer Institute that allowed him to work in the Phillips group in the Department of Biology at Virginia Tech and with Peter Hore’s group in the Department of Physics at Oxford.

Ritz’s area of science is very broad and has already published 13 papers at the interface of the physical and biological sciences. Currently he is interested in the assembly of protein aggregates in cells though his study of light harvesting systems (photosynthesis). It is clear that Dr. Ritz is on the leading edge of these studies. He is also interested in the effect of weak magnetic fields on biochemical reactions—in particular on photosynthesis. This route led him to study and propose a new chemical mechanism for how birds use the geomagnetic field to provide them a sense of direction. Here he has proposed several experiments to verify this new idea that could solve a very fundamental problem in sensory biology. Dr. Ritz is also a gifted classical guitarist, entertainer, and teacher.