anisotropy-independent mass modeling

Joe Wolf, G. Martinez, J. Bullock, M. Kaplinghat, F. Avedo (CfC, UC Irvine) L. Strigari (Stanford) M. Geha, R. Munoz (Yale) J. Simon (OCIW) B. Willman (Haverford)

Abstract: We demonstrate both analytically available and with kinematic that the mass-anisotropy degeneracy data is effectively eliminated near the 3D deprojected half-light radius of spheroidal galaxies.

The above equation explains the plotted behavior that the effect of anisotropy on determining mass is minimized near the 3D deprojected half-light radius ($r_{1/2}$).

We derive the above mass errors by marginalizing over solutions to the spherical Jeans equation. We allow for nonconstant anisotropy profiles, varying density profiles, and we incorporate the photometric errors. A pinch occurs in the same region as demonstrated in the left plot.

 $r_{1/2}$ tested for almost eight decades in mass. The insert shows that the formula is accurate to better than 10%.

mechanisms cause differing slopes at each end.