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A comparison between Milky Way and Andromeda satellites
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Using a Gaussian PDF for the observed stellar velocities, we marginalize
over all free parameters (including photometric uncertainties) using a
Markov Chain Monte Carlo (MCMC).



Given this data

Using the individual stars that make up this
dispersion profile...

LOS Dispersion (km/s)
— [

Projected (On Sky) Radius

Walker et al. 2007, ApJ




We derive the following.
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Hmm...

It turns out that the mass is best constrained withinr, ,,
the given data, is less constrained forr<r,, thanr>r .

and despite
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Anisotrwhat?
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Center of system: AniSOt rWhat?

Observed dispersion is radial
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Edge of system: Observed
dispersion is tangential
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Center of system: Anisot rWhat?

Observed dispersion is radial
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Newly derived analytic
equations predict that
Joe Wolf et ’ WYY theeffect of anisotropy is

al., in prep 3D Physical Radius [kpc] minimal ~r,,. E.g.:

dlnp, dlno? dl
np nos: 11,6_|_3

dlnr + dlnr + dlnr




Mass-anisotropy degeneracy
‘has effectively been |
terminated at r, :

Derived equation under several simplifications:
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Really?

Boom!

Equation tested on
systems spanning
almost eight decades
in half-light mass
after lifting
simplifications.

Joe Wolf et al., in prep
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“Classical” MW dwarf spheroidals

Dotted lines:
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Mass Errors: Origins

Fornax

Error dominated
by kinematics
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Applications: dSphs- ¥ 5<

g_» Vx.«fem ;,“ ,

A common mass scale? M(<300)~107 M, . 2> M, ~10°M_
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Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature
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Applications: dSphs-fgF¥x<

%

A common mass scale? Plotted: M, ., , =109M_ .

Bullock+ 01
c-M relation
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Notice: No trend with luminosity, as might be expected! Joe Wolfet al., in prep



Applications: dSphs

A common mass scale? Plotted: M, ., , =109M_ .
Minimum mass threshold for galaxy formation?

Bullock+ 01

c-Mrelaton [ /% 8 OV T
107
~
o)
=
e
o™
>
= 1 05
0O 10%3<L/Lg< 1072 dSph O 10%°<L/Le< 107> dSph
10° O 10*°<L/Lg< 10> dSph & 10*°<L/Le< 10> dSph

® 10%%<L/Lg<10*° dSph
]

® 10%°<L/Lg< 10" dSph
| ]

100 1000
3D Half-light Radius [pc]

100 1000
3D Half-light Radius [pc]

Notice: No trend with luminosity, as might be expected! Joe Wolfet al., in prep



Another dataset:-M31

UC Irvine: James Bullock, Manoj Kaplinghat, Erik Tollerud, Joe Wolf, Basilio Yniguez
UC Santa Cruz: Raja Guhathakurta (SPLASH PI), Karrie Gilbert, Evan Kirby
STScl: Jason Kalirai

Yale: Marla Geha

And others involved in SPLASH - Spectroscopic and Photometric Landscape
of Andromeda’s Stellar Halo




M31 dSphs:
Bigger but less massive!

Spectroscopic data from

Keck/DEIMOS. Bullock+ 01 T~

c-M relation

DM halo mass offset by ~10.
M(<300 pc) offset by ~2.

Andromeda dSph
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~M31: Different Environment?

[f M31's DM halo collapsed later = Less dense substructure &
later forming star formation.

Interesting:

Brown et al. 2 1 stellar

halo is young



Applications: Global
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Applications: Global

Much information about feedback & galaxy formation can
be summarized with this plot. Also note similar trend to
number abundance matching.
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Applications: Global

Much information about feedback & galaxy formation can
be summarized with this plot. Also note similar trend to
number abundance matching.

Inefficient at
galaxy formation
Ultrafaint dSphs: il
most DM _clTs
dominated 5
systems known! 3
g
-l
Globulars: \Q
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Take-Home Messages

Lastly, M31 dSphs are less massive at a given radius than the
MW population. Environment must be taken into account
when considering galaxy formation scenarios.







Isn’t this just the scalar virial theorem (SVT)?

Nope! The SVT only gives you limits on the total mass of a
system. Not knowing the anisotropy will also affect your
estimate.

This formula yields the mass within r, ,, the 3D deprojected
half-light radius, and is accurate independent of our
ignorance of anisotropy.



M31 dSphs: Larger than=IMI\W-dSphs
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Dispersion vs Luminosity

Keck/DEIMOS
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Dispersion data from Kalirai et al 2009, in prep



Dispersion vs Ry«

T

—
|
n
£
.Y
C—
-
R,
n
—
O
Q
0
(]
>
X~
O
O
O
>

X = Andromeda dSph

200 400 600 800 1000
Observed Half-light Radius [pc]

Dispersion data from Kalirai et al 2009, in prep



