Modeling mass independent of anisotropy

A comparison between Milky Way and Andromeda satellites

AAS 214, June 10, 2009

Team Irvine:

Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo

KIPAC: Louie Strigari Haverford: <u>Beth Willman</u> OCIW: Josh Simon

Yale: <u>Marla Geha</u>

<u>Ricardo Munoz</u>

Collaborators

$$\underset{\text{Equation}}{\text{Spherical Equation}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

$$\underset{\text{Equation}}{\text{Spherical Equation}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

0

- /

Spherical Jeans Equation

$$\frac{d(\rho_\star \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_\star(r) - 2\beta(r)\rho_\star \sigma_r^2$$

 \mathbf{x}

1

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

Mass Density (6 parameters)

$$\rho(r) = \frac{\rho_s e^{-r/r_{cut}}}{(r/r_s)^c [1 + (r/r_s)^a]^{(b-c)/a}}$$

$$\underset{\text{Equation}}{\text{Spherical Equation}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

Mass Density (6 parameters)

$$\rho(r) = \frac{\rho_s e^{-r/r_{cut}}}{(r/r_s)^c [1 + (r/r_s)^a]^{(b-c)/a}}$$

Using a Gaussian PDF for the observed stellar velocities, we marginalize over all free parameters (including photometric uncertainties) using a Markov Chain Monte Carlo (MCMC).

Given this data

Using the individual stars that make up this dispersion profile...

Projected (On Sky) Radius

Walker et al. 2007, ApJ

We derive the following

<u>Confidence Intervals:</u> Cyan: 68% Purple: 95%

Hmm...

It turns out that the mass is best constrained within $r_{1/2}$, and despite the given data, is less constrained for $r < r_{1/2}$ than $r > r_{1/2}$.

<u>Confidence Intervals:</u> Cyan: 68% Purple: 95%

Anisotrwhat?

Center of system: Observed dispersion is radial

Anisotrwhat?

Center of system: Observed dispersion is radial

Anisotrwhat?

Mass-anisotropy degeneracy has effectively been terminated at r_{1/2}:

Derived equation under several simplifications:

$$M_{_{1/2}} = 3 r_{_{1/2}} \sigma_{_{LOS}}^2 / G$$

Mass-anisotropy degeneracy has effectively been terminated at r_{1/2}:

Derived equation under several simplifications:

$$M_{_{1/2}} = 3 r_{_{1/2}} \sigma_{_{LOS}}^2 / G$$

 $M_{_{1/2}} \simeq 930 \, \frac{\mathrm{K_{half}}}{\mathrm{M_{half}}}$ r_{1/2} ≈ 4/3 *

Really?

Boom! Equation tested on systems spanning almost **eight** decades in half-light mass after lifting simplifications.

Boom!

Dotted lines: 10% variation in factor of 3 in M_{Appx}

10⁸ M_{1/2} [M_☉] 10⁷ 10⁷ 10⁸ $M_{Appx} = 3 r_{1/2} \sigma_{LOS}^2 / G [M_{\odot}]$

"Classical" MW dwarf spheroidals

Mass Errors: Origins

Mass Errors: Origins

A common mass scale? $M(<_{3}oo)\sim 10^7 M_{sun} \rightarrow M_{halo}\sim 10^9 M_{sun}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

A common mass scale? $M(<_{3}oo)\sim 10^7 M_{sun} \rightarrow M_{halo}\sim 10^9 M_{sun}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

A common mass scale? Plotted: $M_{halo} = 10^9 M_{sun}$

Notice: No trend with luminosity, as might be expected! Joe Wolf et al., in prep

A common mass scale? Plotted: $M_{halo} = 10^9 M_{sun}$ Minimum mass threshold for galaxy formation?

Notice: No trend with luminosity, as might be expected! Joe Wolf et al., in prep

Another dataset: M31

UC Irvine: James Bullock, Manoj Kaplinghat, Erik Tollerud, Joe Wolf, Basilio Yniguez UC Santa Cruz: Raja Guhathakurta (SPLASH PI), Karrie Gilbert, Evan Kirby STScI: Jason Kalirai

Yale: Marla Geha

And others involved in SPLASH \rightarrow

M31 dSphs: Bigger but less massive!

Spectroscopic data from Keck/DEIMOS.

DM halo mass offset by ~10. M(<300 pc) offset by ~2.

M31: Different Environment?

If M₃₁'s DM halo collapsed later \rightarrow Less dense substructure & later forming star formation.

Interesting: Brown et al. 2008 find that portion of investigated M31 stellar halo is younger (on average) than MW's.

Applications: Global

Applications: Global

Much information about feedback & galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Applications: Global

Much information about feedback & galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Ultrafaint dSphs: most DM dominated systems known!

Globulars: Little to no dark matter

Inefficient at galaxy formation

L_{*}: Efficient at galaxy formation

Take-Home Messages $M_{_{1/2}} = 3 r_{_{1/2}} \sigma_{_{LOS}}^2 / G$ $\frac{M_{1/2}}{M_{\odot}} \simeq 930 \, \frac{R_{half}}{pc} \left(\frac{\sigma_{LOS}}{km/s} \right)$

Lastly, M₃₁ dSphs are less massive at a given radius than the MW population. Environment must be taken into account when considering galaxy formation scenarios.

Extra Slides

Wait a second...

Isn't this just the scalar virial theorem (SVT)?

$$M_{_{1/2}} = 3 r_{_{1/2}} \sigma_{_{LOS}}^2 / G$$

Nope! The SVT only gives you limits on the total mass of a system. Not knowing the anisotropy will also affect your estimate.

This formula yields the mass within $r_{1/2}$, the 3D deprojected half-light radius, and is accurate independent of our ignorance of anisotropy.

M31 dSphs: Larger than MW dSphs

McConnachie & Irwin 2006, MNRAS **Dispersion vs Luminosity**

Dispersion data from Kalirai et al 2009, in prep

Dispersion vs Rhalf

Dispersion data from Kalirai et al 2009, in prep