Modeling mass independent of anisotropy

A comparison between Milky Way and Andromeda satellites

Joe Wolf (UC Irvine)

Dark Matter in Early-Type Galaxies
Rio de Janeiro, Brazil
August $3^{\text {rd }}, 2009$

Team Irvine:

Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo

KIPAC: Louie Strigari Haverford: Beth Willman OCIW: Josh Simon

Yale: Marla Geha

Ricardo Munoz

Collaborators

1. A new mass estimator: accurate without knowledge of anisotropy/beta
2. Applications of new mass determinations for MW dSphs
3. Comparison between MW and M31 dSphs

Mass modeling of hot-systems

Many gas-poor dwarf galaxies have a significant, usually dominant hot component. They are dispersion supported, not rotation supported.

Consider a spherical, dispersion supported system whose stars are collisionless and are in equilibrium. Let us consider the Jeans Equation:

Mass modeling of hot-systems

$$
\begin{aligned}
& \text { seans } \\
& \text { Equalion } r \frac{d\left(\rho_{\star} \sigma_{r}^{2}\right)}{d r}=\frac{-G M(r)}{r} \rho_{\star}(r)-2 \beta(r) \rho_{\star} \sigma_{r}^{2}, ~
\end{aligned}
$$

Velocity
Anisotropy
(3 parameters)

$$
\beta(r)=\left(\beta_{\infty}-\beta_{0}\right) \frac{r^{2}}{r_{\beta}^{2}+r^{2}}+\beta_{0}
$$

Mass modeling of hot-systems

$$
\underset{\substack{\text { Jeans } \\ \text { Equation }}}{r \frac{d\left(\rho_{\star} \sigma_{r}^{2}\right)}{d r}=\frac{-G M(r)}{r} \rho_{\star}(r)-2 \beta(r) \rho_{\star} \sigma_{r}^{2}, ~}
$$

Velocity
Anisotropy
(3 parameters)

$$
\beta(r)=\left(\beta_{\infty}-\beta_{0}\right) \frac{r^{2}}{r_{\beta}^{2}+r^{2}}+\beta_{0}
$$

Mass Density
(6 parameters)

$$
\rho(r)=\frac{\rho_{s} e^{-r / r_{c u t}}}{\left(r / r_{s}\right)^{c}\left[1+\left(r / r_{s}\right)^{a}\right]^{(b-c) / a}}
$$

Mass modeling of hot-systems

$$
\underset{\text { Equation }}{\text { Jeans }} r \frac{d\left(\rho_{\star} \sigma_{r}^{2}\right)}{d r}=\frac{-G M(r)}{r} \rho_{\star}(r)-2 \beta(r) \rho_{\star} \sigma_{r}^{2}
$$

Velocity
Anisotropy
(3 parameters)

$$
\beta(r)=\left(\beta_{\infty}-\beta_{0}\right) \frac{r^{2}}{r_{\beta}^{2}+r^{2}}+\beta_{0}
$$

Mass Density (6 parameters)

$$
\rho(r)=\frac{\rho_{s} e^{-r / r_{c u t}}}{\left(r / r_{s}\right)^{c}\left[1+\left(r / r_{s}\right)^{a]}\right]^{(b-c) / a}}
$$

Using a Gaussian PDF for the observed stellar velocities, we marginalize over all free parameters (including photometric uncertainties) using a Markov Chain Monte Carlo (MCMC).

Thought Experiment

 Given the following kinematics...

Thought Experiment

Given the following kinematics, will you derive a better constraint on mass enclosed within:

a) $0.5{ }^{*} \mathrm{r}_{1 / 2}$
b) $r_{1 / 2}$
c) $1.5{ }^{*} \mathrm{r}_{1 / 2}$

Where $r_{1 / 2}$ is the derived 3D deprojected half-light radius of the system. (The sphere within the sphere containing half the light).

Confidence Intervals: Cyan: 68\% Purple: 95\%

It turns out that the mass is best constrained within $\mathrm{r}_{1 / 2}$, and despite the given data, is less constrained for $r<r_{1 / 2}$ than $r>r_{1 / 2}$.

Confidence Intervals: Cyan: 68\% Purple: 95%

Joe Wolf et al., in prep

Anisotrwhat?

Center of system:

Observed dispersion is radial

Anisotrwhat?

Center of system:
 Observed dispersion is radial
 Anisotrwhat?

Edge of system: Observed dispersion is tangential

Radial Anisotropy
Isotropic
Tangential
Newly derived analytic equations predict that the effect of anisotropy is minimal near $\mathrm{r}_{1 / 2}$ for observed stellar densities:

$$
M(<r ; 0)-M(<r ; \beta)=\frac{\beta(r) r \sigma_{r}^{2}(r)}{G}\left(\frac{d \ln \rho_{\star}}{d \ln r}+\frac{d \ln \sigma_{r}^{2}}{d \ln r}+\frac{d \ln \beta}{d \ln r}+3\right)
$$

Mass-anisotropy degeneracy has effectively been terminated at $r_{1 / 2}$:
 Derived equation under several simplifications:

Mass-anisotropy degeneracy

 has effectively been terminated at $r_{1 / 2}$:Derived equation under several simplifications:

$$
\mathrm{M}_{1 / 2}=3 \mathrm{G}^{-1} \mathrm{r}_{1 / 2}\left\langle\sigma_{\operatorname{los}}^{2}\right\rangle
$$

Wait a second

Isn't this just the scalar virial theorem (SVT)?

Nope! The SVT only gives you limits on the total mass of a system.

This formula yields the mass within $r_{1 / 2}$, the 3D deprojected half-light radius, and is accurate independent of our ignorance of anisotropy.

Really?

Boom!

Equation tested on systems spanning almost eight decades in half-light mass after lifting simplifications.

Joe Wolf et al., in prep

Boom!

"Classical" MW dwarf spheroidals

Dotted lines:
10% variation in factor of 3 in $\mathrm{M}_{\mathrm{Appx}}$

Joe Wolf et al., in prep

Mass Errors: Origins

Joe Wolf et al., in prep

Mass Errors: 300 stars

Mass Errors: 600 stars

Mass Errors: 1200 stars

$\begin{array}{llllllll}0.0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0\end{array}$ 3D Physical Radius [kpc]

Mass Errors: 2400 stars

Joe Wolf et al., in prep

Applications: dSphs

A common mass scale? $\mathrm{M}(<300) \sim 10^{7} \mathrm{M}_{\text {sun }} \rightarrow \mathrm{M}_{\text {halo }} \sim 10^{9} \mathrm{M}_{\text {sun }}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

Applications: dSphs

A common mass scale? $\mathrm{M}(<300) \sim 10^{7} \mathrm{M}_{\text {sun }} \rightarrow \mathrm{M}_{\text {halo }} \sim 10^{9} \mathrm{M}_{\text {sun }}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

Applications: dSphs

Joe Wolf et al., in prep

Applications: dSphs

A common mass scale? Plotted: $\mathrm{M}_{\text {halo }}=3 \times 10^{9} \mathrm{M}_{\text {sun }}$

Joe Wolf et al., in prep

Applications: dSphs

A common mass scale? Plotted: $\mathrm{M}_{\text {halo }}=3 \times 10^{9} \mathrm{M}_{\text {sun }}$
Minimum mass threshold for galaxy formation?

Notice: No trend with luminosity, as might be expected! Joe Wolf et al., in prep

Another dataset: M31

UC Irvine: James Bullock, Manoj Kaplinghat, Erik Tollerud, Joe Wolf, Basilio Yniguez
UC Santa Cruz: Raja Guhathakurta (SPLASH PI)
STScI: Jason Kalirai
Yale: Marla Geha
U. Washington: Karrie Gilbert

Caltech: Evan Kirby

M31 dSphs: Larger than MW-dSphs

M31 dSphs:

Bigger but less massive!

Spectroscopic data from Keck/DEIMOS.

DM halo mass offset by ~ 10. $\mathrm{M}(<300 \mathrm{pc})$ offset by ~ 2.

Joe Wolf et al., in prep

M31: Different Environment?

If M31's DM halo collapsed later \rightarrow Less dense substructure \& later forming star formation.

Interesting:
Brown et al. 2008 find that portion of investigated M31 stellar halo is younger (on average) than MW's.

Applications: Global

Joe Wolf et al., in prep

Applications: Global

Much information about feedback \& galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Joe Wolf et al., in prep

Applications: Global

Much information about feedback \& galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Ultrafaint dSphs: Most DM dominated systems known!

Globulars: Offset from L* by factor of three
(Hmm...)

Applications: Global

Last plot:
Mass floor

This plot:
Luminosity ceiling

Joe Wolf et al., in prep

Take-Home Messages

$$
\frac{\mathrm{M}_{1 / 2}=3 \mathrm{G}^{-1} \mathrm{r}_{1 / 2}\left\langle\sigma_{\mathrm{los}}^{2}\right\rangle}{\frac{\mathrm{M}_{1 / 2}}{\mathrm{M}_{\odot}} \simeq 930 \frac{\mathrm{R}_{\mathrm{eff}}}{\mathrm{pc}} \frac{\left\langle\sigma_{\mathrm{los}}^{2}\right\rangle}{\mathrm{km}^{2} \mathrm{~s}^{-2}}}
$$

Take-Home Messages

- M3ı dSphs: Offset mass scale. What the *\&\%\#?!
- Knowing $\mathrm{M}_{1 / 2}$ accurately without knowledge of anisotropy gives new constraints for galaxy formation theories to match
- Future simulations must be able to reproduce these results
- GCs vs L*: M/L ratios are offset...hmm?

Dispersion vs Luminosity

Dispersion data from Kalirai et al 2009, in prep

