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• I want to understand how galaxies form.

• Need to create a large scale simulation that 
implements hydrodynamics originating from first 
principles.

• Really hard to implement. Important feedback 
operates on many different scales. Galaxy properties 
sensitive to small changes.
E.g. AGN: pc scales, Reionization: Mpc scales.



Galaxies sit deeply embedded 

inside of DM halos (White & Rees 

78), which formed hierarchically: 

small halos merge to form large 

halos.

Kyle Stewart et al. 2008





Figure: James Bullock



• We don’t have a consensus on the nature of dwarf 
galaxies. Not good…these are the simplest objects 
and we need to understand them first.
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• LCDM simulations generally agree (unlike 
hydrodynamic simulations). 
Still, two significant problems exist:

1. Overabundance of substructure”Missing 
Satellites problem” (MSP). 

2. Disagreements between inner density shape: 
LCDM produce cusps. 
LSBG rotation curves prefer cores.

• WDM a possible solution. Need accurate mass 
determinations to attempt to solve both problems.



• Foreground junk in SDSS turns out to remind us 
how little we actually know.

• Many over-densities turn out to be bound, DM-
dominated objects.



The dwarf galaxy pond before SDSS:

Figure: Roen Kelly / Astronomy



The dwarf galaxy pond after SDSS:

Figure: Roen Kelly / Astronomy



With stellar kinematics, common techniques are:

1. V2 = GM/r
2. Virial Theorem
3. Orbit modeling
4. Distribution function modeling
5. Jeans Equation

#1 only works for rotational-supported systems.
#3 and #4 need quality data to provide good constraints.
#2 and #5 are simple and can be used with limited data sets.

Consider the simplest assumption: spherical symmetry



Unfortunately, the spherically symmetric SVT is not very 
useful given the data most observers obtain.

The SVT only provides large bounds on the mass within an 
often not well-defined stellar extent (see Merritt 1987):



Unfortunately, the spherically symmetric SVT is not very 
useful given the data most observers obtain.

The SVT only provides large bounds on the mass within an 
often not well-defined stellar extent (see Merritt 1987):

Assuming a King stellar distribution with rlim/rcore=5



Many gas-poor dwarf galaxies have a significant, usually dominant hot 
component. They are pressure-supported, not rotation-supported. 

Consider a spherical, pressure-supported system whose stars are 
collisionless and are in equilibrium. Let us consider the Jeans 
Equation:

We want mass

Unknown: 

Anisotropy

Radial 

dispersion 

(depends 

on beta)

Assume known: 

3D deprojected 

stellar densityFree function



Basic idea behind Jeans analysis:

(Note the one-way arrow)
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Using a Gaussian PDF for the observed stellar velocity distribution, we 

marginalize over all free parameters (including photometric uncertainties) 

using a Markov Chain Monte Carlo (MCMC).



MCMC algorithm picks favorable combinations 

of M and β that produce dispersions that match 

the observed velocities. β is not constrained 

from just LOS data (not exactly true), but M 

may be constrained...if we are clever.



Strigari et al. 2006, ApJ

Core

Cusp



Given the following kinematics…

Reff

Walker et al. 2007, ApJ
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Given the following kinematics, will you derive 

a better constraint on mass enclosed within:

a)  0.5 * r1/2 b) 1.0 * r1/2 c) 1.5 * r1/2

Where r1/2 is the derived 3D deprojected half-light radius of the system.

(The sphere within the sphere containing half the light).
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Confidence Intervals:
Cyan: 68%
Purple: 95%

A CAT scan of 50 mass likelihoods at different radii:



It turns out that the mass is best constrained within r1/2, and despite 
the given data, is less constrained for r < r1/2 than r > r1/2.

Confidence Intervals:
Cyan: 68%
Purple: 95%

Joe Wolf et al., 

0908.2995
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Center of system: 

Observed dispersion is radial

Edge of system: Observed 
dispersion is tangential
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Newly derived analytic 
equations predict that 
the effect of anisotropy is 
minimal near r1/2 for 
observed stellar densities:



We have found a way to invert the problem*:
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To get this in the form of an Abel inversion, 

need to get rid of R in the integrand (but 

needed, as is, inside of the kernel)

R = 2D projected 

on-sky radius

r = 3D deprojected 

physical radius



Invertible Maybe Invertible?

Simple, but 

not obvious





No more R dependence in the brackets!

We can now use an Abel inversion to write the bracketed term as 

a function of the left-hand side!

.

.

.

It turns out this isn’t very useful, as you will need to know the 

second derivative of the left-hand side.

(See Appendix A of Wolf et al. 0908.2995 

and Mamon & Boué 0906.4971)



Given these tools, let’s search for a radius where 

the mass is independent of the anisotropy.



If the LHS is observable, it must be 

independent of an assumed anisotropy. 
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If the LHS is observable, it must be 

independent of an assumed anisotropy. 

Since this equation is invertible, a 

unique solution must exist.

Thus, the bracketed terms must be well 

determined, no matter the assumed 

anisotropy.



Therefore, we can equate the 

isotropic integrand with any arbitrary 

anisotropic integrand:



Take a derivative with respect to ln(r) 

and then subtract the Jeans Equation:



We present in depth arguments as to why 

the middle two terms should be small, and 

we also demonstrate that the first term = -3 

near r1/2 for most observed galaxies and 

stellar systems which are in equilibrium.

Take a derivative with respect to ln(r) 

and then subtract the Jeans Equation:



Derived equation under several simplifications:



r1/2 ≈

4/3 * Reff

Derived equation under several simplifications:



Isn’t this just the scalar virial theorem (SVT)?

Nope! The SVT only gives you limits on the total mass of a 
system.

This formula yields the mass within r1/2, the 3D deprojected
half-light radius, and is accurate independent of our 
ignorance of the stellar anisotropy.



Joe Wolf et al., 0908.2995

Boom!
Equation tested on 
systems spanning 
almost eight decades 
in half-light mass 
after lifting 
simplifications.



“Classical” MW dwarf spheroidals

Dotted lines:

10% variation in 

factor of 3 in MAppx

Joe Wolf et al., 0908.2995



Error dominated 
by kinematics



Error dominated 
by kinematics

Error 
dominated by 
anisotropy
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A common mass scale? Plotted: Mhalo = 3 x 109 Msun
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Bullock+ 01 

c-M relation



Bullock+ 01 

c-M relation

Notice: No trend with luminosity, as might be expected!

A common mass scale? Plotted: Mhalo = 3 x 109 Msun

Minimum mass threshold for galaxy formation?

Bullock+ 01 

c-M relation

Joe Wolf et al. 0908.2995
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Much information about feedback & galaxy formation can 
be summarized with this plot. Also note similar trend to 
number abundance matching.
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Much information about feedback & galaxy formation can 
be summarized with this plot. Also note similar trend to 
number abundance matching.

L*: Efficient at 

galaxy 

formation

Inefficient at 

galaxy formation
Ultrafaint dSphs: 

most DM 

dominated 

systems known!

Joe Wolf et al., 
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Globulars: 

Offset from L* 

by factor of 

three

(Hmm…)



Last plot:

Mass floor

This plot: 

Luminosity ceiling
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- Knowing M1/2 accurately without knowledge of anisotropy 
gives new constraints for galaxy formation theories to match. 

- Future simulations must be able to reproduce the 
observed trends between  M1/2 and L for all pressure-
supported systems, from dSphs (L~102) to galaxy cluster 
spheroids (L~1012).


