Demonstration of Alpha Channeling in DIII–D

by
K.L. Wong, R. Budny, R. Nazikian, PPPL
C.C. Petty, C.M. Greenfield, General Atomics
W.W. Heidbrink, E. Ruskov, UC Irvine

IAEA Technical Committee Meeting
at General Atomics, San Diego

October 6–8, 2003
Motivation

• The H-factor is very important for ignition in ITER (Snowmass Conference, 2002)
• Can we form an ITB in ITER?
• Ingredients for ITB:
 NCS configuration - needs external CD
 E_r shear - needs external momentum input
• Can we use the □’s?
 □ channeling
Alpha Channeling (N. Fisch)
to divert the \[\Box \] power for current drive and/or ion heating

- LHW(\(k_\perp \& k_{\parallel}\)) : PRL(1992)

\[RF \rightarrow [\Box (< 3.5 \text{ MeV})] \rightarrow \text{fast ions} \rightarrow \text{bulk ions} \]
\[\text{bulk electrons} \rightarrow \text{anomalous loss} \]
Use □’s to form ITB

- The past emphasis was on ion heating - can enhance reactivity by factor 2.
- Here we explore the possibility of ITB formation: redistribution of fast □’s to modify the magnetic shear and the velocity shear. 40% enhancement in □ can double the reactivity.
NCS formation by ejection of co-moving ions’s

- Co-moving ions drive co-current.
- Ejection of co-moving ions reduces non-inductive current in the core.
- More non-inductive current at the edge.
- Reduced magnetic shear in the core.
Simulation of DIII-D's with co-beam injection in DIII-D

- Shot 92755 (C.C. Petty)
 1 co-source, B=1.8 tesla, $I_p=700$ kA, $n_e < 10^{13}$ cm$^{-3}$, AE’s at 60 kHz (n=1) and 85 kHz(n=2), q(r) flat in the core, ITB with q(0)>1.8

- Shot 94777 & 94771 (C. Greenfield)
 2 co-sources, B=1.9 tesla, $I_p=600$ kA, $n_e \sim 1.5 \times 10^{13}$ cm$^{-3}$, q(r) flat in the core with q(0)>1.6, steady state ITB - limited by 5s beam pulse
Spectrum of Mirnov coil signal
Ejection of fast ions by AE’s

- $q(r)$ at the core remains flat.
- Initial beam deposition peaks at plasma center.
- Fast ion density profile is broader than TRANSP modeling which does not include the AE effects.
Quasi-steady-state ITB

- ITB life time is limited by the 5s beam pulse.
- $T_e(0), N_n$ constant in time at $t > 3s$.
- $n_e(0)$ rises slowly due to beam fueling.
The role of AE’s on $q(r)$

- Compare #94777 (with AE) to #94771 (no AE).
- Profiles of p_b & J_{NI} behave as expected.
Can this work in a fusion reactor?

- In a fusion reactor, \(f_r(v) \) is isotropic.
- As long as \(p_r(r) \) peaks on axis, only AE’s propagating in the co-direction are unstable, and only co-moving \(\square \)’s can resonate with and ejected by the AE’s because (a) \(k_\parallel v_{di} \) & (b) \(k_\parallel / k_\perp < B_\parallel / B_\perp \). [Wong. PPCF 41(1999) R1, Fig.6].
- Need many overlapping AE’s.
- May need external antenna to select the AE spectrum.
ITER may not have enough co-going □’s for NCS

- Estimate CD efficiency from K. Okano, NF30(1990)423:
 \[\frac{j}{p_d} = \frac{2eZ_b \square_{se}}{(m_p A_b V_c) \square_o F_{el} F_{ed} F_{cx} J(x_b, y, \square_o, \square)} \]
 \[F_{el} = 1 - \frac{Z_b}{Z_{eff}} \left[1 - G(Z_{eff}, \square) \right] \] - electron screening factor
 Coeff’s evaluated from bounce-averaged Fokker Planck calculation; quite accurate for circular tokamaks.
 For D-beam, \(Z_b = 1 \),
 For □, \(Z_b = 2 \) - less efficient due to electron screening.

- Plug in the ITER parameters, need more co-going □’s for NCS configuration.
ITER may not have enough □’s to form NCS

- Estimate CD efficiency from K. Okano, NF30(1990)423:
 \[\frac{j}{p_d} = \frac{2eZ_b\square_{se}}{(m_pA_bV_c) \square_b F_{el} F_{ed} F_{cx} J(x_b,y, \square_b,\square)} \]
 \[F_{el} = 1 - \frac{Z_b}{Z_{eff}} \left[1 - G(Z_{eff}, \square) \right] \] - electron screening factor
 Coeff’s evaluated from bounce-averaged Fokker Planck calculation; quite accurate for circular tokamaks.
 For D-beam, \(Z_b = 1 \),
 For □, \(Z_b = 2 \) - less efficient due to electron screening.
- Plug in the ITER parameters, may need more co-going □’s for NCS configuration.
Shear in V_ϕ and E_r

- Co-going \square’s ejected from core(r_1) to edge(r_2), leaving more counter-going \square’s in the core. This produces a torque \square shown in Fig(a).

- Shear in V_ϕ produces shear in E_r.

$$E_r = V_\phi B_\phi - V_\phi B_\phi + \left(\frac{1}{n_i e Z_i}\right) \frac{dP_i}{dr}$$
Work in Progress

• Using ITER parameters, we try to evaluate the maximum E_r shear and see if an ITB can be formed by manipulating the \square’s.

• Preliminary result shows that using all the co-going \square’s with $r=30\text{cm}$, the shearing rate becomes comparable to $0.01 \square^*_i$
 - this result still needs independent verification
Summary

- It has been shown that spontaneous redistribution of energetic ions by the excited AE’s can reduce the central magnetic shear and produce velocity shear - two ingredients needed for ITB.
- Quasi-steady-state ITB can be sustained in DIII-D.
- This mechanism offers the possibility of having an ITB as a natural steady state of a burning plasma.
- There may not be enough energetic a’s in the present ITER design to from an ITB, but it may be possible in a different design.
- Partial effects are possible for ITER.